Showing posts with label carbon. Show all posts
Showing posts with label carbon. Show all posts

Friday, April 5, 2013

Klaus Lackner works on carbon capture technology

Klaus Lackner,
Columbia University
Professor Klaus Lackner, director of the Lenfest Center for Sustainable Energy at the Earth Institute, at Columbia University, is working on technology to scrub carbon dioxide from the air. “Our goal is to take a process that takes 100,000 years and compress it into 30 minutes,” says Lackner.

Direct air capture of carbon dioxide is a method that takes carbon dioxide out of ambient air, as opposed to carbon dioxide that is captured from the point of emissions, say, from the smokestack of a coal-fired power plant.

Lackner and his team are developing a device they call an air extractor, modeled after what is most abundant in nature: the leaf of a tree. There is about 0.5 liter of carbon dioxide in a cubic meter of atmosphere. When the extractor is dry, it loads itself with carbon dioxide from the air; when it's wet it releases carbon dioxide it has captured.

“We can do this at a cost of about $30 a ton of carbon dioxide”, says Lackner, “we have designed a box that can extract about a ton of carbon dioxide a day; it fits into a shipping container”. “If we had 100 million of them", Lackner adds, “we could extract more carbon dioxide out of the air then is currently put in.”

The carbon can be stored in the form of mineral carbonate rock or it can be injected deep in the ground. Alternatively, the carbon dioxide can be used, e.g. by turning it into a fuel. Airplanes will likely need to be powered by fuel for a long time, so captured carbon dioxide could be used to more sustainably produce synthetic jetfuel.

In his lab at Columbia's Engineering School, Lackner has built a small greenhouse, demonstrating that  air extractors loaded with captured carbon dioxide can be placed inside a greenhouse; the humid atmosphere inside the greenhouse will make that the carbon dioxide is released. Adding carbon dioxide to the air inside greenhouses is beneficial for plant growth; the plants will take the carbon dioxide out of the air and use it to grow.



References

- Prof. Klaus Lackner Takes Step Toward Workable Carbon Capture Technology
http://news.columbia.edu/carbondioxide

- Klaus S. Lackner, Director of the Lenfest Center for Sustainable Energy, Columbia Universityhttp://www.earth.columbia.edu/articles/view/2523

- Prof. Klaus Lackner Takes Step Toward Workable Carbon Capture Technolog . .
http://www.youtube.com/watch?v=qGL21j10C8Q

- Direct Air Capture of Atmospheric Carbon Dioxide
http://large.stanford.edu/courses/2011/ph240/mccurdy1/

- The Great Debate: CLIMATE CHANGE - Surviving The Future (1:15 to 1:24)
http://www.youtube.com/watch?v=XPaTAC29W2I

- Funding of Carbon Air Capturehttp://geo-engineering.blogspot.com/2009/05/funding-of-carbon-air-capture.html

- Removing carbon from air - Discovery Channel
http://geo-engineering.blogspot.com/2008/10/removing-carbon-from-air-discovery.html

Monday, April 20, 2009

Open Letter to Major Economies Forum on Energy and Climate

Forum Participants,

We, a group of scientists, researchers and other people sharing a strong background and interest in climate change, are concerned that the Forum's sole focus will be on the politics of energy, as seems confirmed by the name of the Forum.

We believe that the scientific evidence strongly suggests that the approach to the climate change problem should be as broadly based as possible. As such, this should include the following four parts:
Part A: Emissions reduction
Part B: Carbon stock management
Part C: Heat transfer and radiation management
Part D: Adaptation

We note that there is little or no funding for research and testing of geoengineering methods (in Part B and Part C). These should be urgently considered as part of a comprehensive approach to climate change.

Signatories:
- John Nissen (jn@cloudworld.co.uk)
- Andrew Lockley (Former director of Friends of the Earth ENWI - UK)
- Peter Read (Hon. Research Fellow, Massey University Centre for Energy Research - NZ)
- Bill Fulkerson (Senior Fellow, Institute for a Secure and Sustainable Environment, University of Tennessee)
- Dan Wylie-Sears
- Eugene I. Gordon
- John Gorman (MA (Chartered Engineer MIMechE, MIET - UK)
- Jim Woolridge (former Climate and Energy Campaigner, Earthwatch/Friends of the Earth, Ireland)
- Sam Carana (contributor to feebate.net - sam.carana@gmail.com)

References:
White House Announcement of Major Economies Forum (MEF)
White House Announcement of Mexico MEF Meeting
Department of State Annoucement of MEF
Open letter to Dr Rajendra K. Pachauri, IPCC chair (Gather)
Open letter to Dr Rajendra K. Pachauri, IPCC chair (Geo-engineering)
Open Letter to Major Economies Forum Participants (background)

Thursday, October 23, 2008

Removing carbon from air - Discovery Channel

 David Keith works to remove CO2 directly from ambient air Professor David Keith of the University of Calgary is working on a device that removes carbon dioxide directly from ambient air.

Keith has built a tower, 4 feet wide and 20 feet tall, with a fan at the bottom that sucks air in. Keith expects the air coming out at the top to have approximately 50% less carbon dioxide than the air coming in.

The tower features in an episode of Discovery Channel’s new “Project Earth” series on TV. The series has the largest budget of any in Discovery Channel’s history, and it may eventually attract a global viewership of more than 100 million.

The episode on Keith’s research has already aired in the U.S. - if you're missed it, you can watch it on Discovery Channel’s website, at: http://dsc.discovery.com/tv/project-earth/project-earth.html - click on “Episodes.”

If the program hasn't aired in your country, you may not get access to the online episode, but you can read more at: http://dsc.discovery.com/tv/project-earth/lab-books/fixing-carbon/guide1.html - also click on the links under "MORE CARBON".

The picture below describes the Big Picture of recycling, in which I envisage aviation to fund CO2 air capture. When talking about recycling, most people think about recycling of industrial products only. They may also see composting of organic waste as a (second) way of recycling. Instead of composting, I actually envisage organic waste to be burned by means of pyrolysis, in order to produce agrichar and hydrogen. I also envisage a third way of recycling that includes removing CO2 from the air. This CO2 could also be used for the production of agrichar and for commercial purposes such as to enrich greenhouses and for the production of building material, carbon fiber, etc. Furthermore, this CO2 could be used as fuel for aviation.

To tackle emissions by aviation, we can switch to airplanes and helicopters that are powered by batteries and hydrogen, or switch to fuels other than fossil fuel. Growth of algae could be assisted by such captured CO2, which could also be turned directly into fuel.

By financially supporting air capture of CO2 and the use of such CO2 to produce fuel, aviation could close the circle of this third way of recycling. This could make aviation environmentally sustainable. Since government is such a large user of aviation (both the military and civil parts of government), it makes sense for the government to start funding such air capture as soon as possible. An international agreement, to be reached in Copenhagen in 2009, could further arrange for the proceeds of environmental fees on commercial flights to fund such air capture and its use for fuel.

 Recycling, the Big Picture - by Sam Carana

Further links:
http://dsc.discovery.com/tv/project-earth/explores/carbon.html - Discovery Channel

http://www.ucalgary.ca/news/september2008/keith-carboncapture - David Keith

http://www.ucalgary.ca/~keith/AirCapture.html - David Keith

http://www.ucalgary.ca/~keith/Misc/AC%20talk%20MIT%20Sept%202008.pdf - M.I.T.

views.blogspot.com - by Sam Carana



The post below is added for archival purposes. It was originally posted by Sam Carana at knol in 2009, which has meanwhile been discontinued by Google. The post received 4513 views at knol.


Funding of Carbon Air Capture


HOW CAN CO2 CAPTURE FROM AMBIENT AIR BEST BE FUNDED?

FEES ON JET FUEL CAN HELP FUND THE DEVELOPMENT OF CARBON CAPTURE FROM AMBIENT AIR.


AIR CAPTURE of CO2 (carbon dioxide) is an essential part of the blueprint to reduce carbon dioxide to acceptable levels. Fees on Air Capture Fundingconventional jet fuel seems the most appropriate way to raise funding to help with the development of air capture technology.

Why target jet fuel? In most other industries, there are ready alternatives to the use of fossil fuel. Electricity can be produced by wind turbines or by solar or geothermal facilities with little or no emissions of greenhouse gases. In the case of aviation, though, the best we can aim for, in the near future at least, is biofuel or synthetic fuel, produced from CO2 captured from ambient air. As discussed below, development of these two forms of renewable energy can go hand in hand. 
Carbon air capture and production of synthetic fuel and bio fuel can go hand in hand
Technically, there seems to be no problem in powering aircraft with bio fuel. Back in Jan 7, 2009, a Continental Airlines commercial aircraft (a Boeing 737-800) was powered in part by algae oil, supplied by Sapphire Energy. The main hurdle appears to be that algae oil is not perceived as price-competitive with fossil fuel-based jet fuel.

Additionally, the aviation industry can offset emissions, e.g. by funding air capture of carbon dioxide. The carbon dioxide thus captured could be partly used to produce fuel, which could in turn be used by the aviation industry, as pictured on the top right image. The carbon dioxide could also be used to assist growth of biofuel, e.g. in greenhouses and in algae bags, as described below.
Algae can grow 20 to 30 times faster than food crops. As the CNN video on the right mentions, Vertigro claims to be able to grow 100,000 gallons of algae oil per acre per year by growing algae in clear plastic bags suspended vertically in a greenhouse. Given the right temperature and sufficient supply of light, water and nutrients, algae seem able to supply an almost limitless amount of biofuel.
The potential of algae has been known for decades. As another CNN report describes, the U.S. Department of Energy (DoE) had a program for nearly two decades, to study the potential of algae as a renewable fuel. The program was run by the DoE's National Renewable Energy Laboratory (NREL) and was terminated by 1996. At that time, a NREL report concluded that an area around the size of the U.S. state of Maryland could cultivate algae to produce enough biofuel to satisfy the entire transportation needs of the U.S.
Apart from growing algae in greenhouses, we should also consider growing them in bags. NASA scientists are proposing algae bags as a way to produce renewable energy that does not compete with agriculture for land or fresh water. It uses algae to produce biofuel from sewage, using nutrients from waste water that would otherwise be dumped and contribute to pollution and dead zones in the sea.

algae yieldThe NASA article conservatively mentions that some types of algae can produce over 2,000 gallons of oil per acre per year. In fact, most of the oil we are now getting out of the ground comes from algae that lived millions of years ago. Algae still are the best source of oil we know.

In the NASA proposal, there's no need for land, water, fertilizers and other nutrients. As the NASA article describes, the bags are made of inexpensive plastic. The infrastructure to pump sewage to the sea is already in place. Economically, the proposal looks sound, even before taking into account environmental benefits.

Jonathan Trent, lead research scientist on the Spaceship Earth project at NASA Ames Research Center, Moffett Field, California, envisages large plastic bags floating on the ocean. The bags are filled with sewage on which the algae feed. The transparent bags collect sunlight that is used by the algae to produce oxygen by means of photosynthesis. The ocean water helps maintain the temperature inside the bags at acceptable levels, while the ocean's waves also keep the system mixed and active.

algaeThe bags will be made of “forward-osmosis membranes”, i.e. semi-permeable membranes that allow fresh water to flow out into the ocean, while preventing salt from entering and diluting the fresh water inside the bag. Making the water run one way will retain the algae and nutrients inside the bags. Through osmosis, the bags will also absorb carbon dioxide from the air, while releasing oxygen. NASA is testing these membranes for recycling dirty water on future long-duration space missions.

As the sewage is processed, the algae grow rich, fatty cells that are loaded with oil. The oil can be harvested and used, e.g., to power airplanes.
In case a bag breaks, it won’t contaminate the local environment, i.e. leakage won't cause any worse pollution than when sewage is directly dumped into the ocean, as happens now. Exposed to salt, the fresh water algae will quickly die in the ocean.
The bags are expected to last two years, and will be recycled afterwards. The plastic material may be used as plastic mulch, or possibly as a solid amendment in fields to retain moisture.
A 2007 Bloomberg report estimated that the Gulf of Mexico's Dead Zone would reach more than half the size of Maryland that year and stretch into waters off Texas. The Dead Zone endangers a $2.6 billion-a-year fishing industry. The number of shrimp fishermen licensed in Louisiana has declined 40% since 2001. Meanwhile, U.S. farmers in the 2007 spring planted the most acreage with corn since 1944, due to demand for ethanol. As the report further describes, the Dead Zone is fueled by nitrogen and other nutrients pouring into the Gulf of Mexico, and corn in particular contributes to this as it uses more nitrogen-based fertilizer than crops such as soybeans.
The Louisiana coast seems like a good place to start growing algae in bags floating in the sea, filled with sewage that would otherwise be dumped there. It does seem a much better way to produce biofuel than by subsidizing corn ethanol.
Not Millions, but Billions of Dollars!
Carbon air capture could produce a form of renewable synthetic fuel that could be used to power aviation. Carbon air capture could also help produce biofuel to power aviation. It would therefore make sense to encourage development in carbon air capture by imposing fees on conventional jet fuel and by using the proceeds of those fees to help fund air capture of carbon dioxide.
According to zFacts.com, corn ethanol subsidies totaled $7.0 billion in 2006 for 4.9 billion gallons of ethanol. That's $1.45 per gallon of ethanol (or $2.21 per gallon of gas replaced). As zFacts.com explains, besides failing to help with greenhouse gases and having serious environmental problems, corn ethanol subsidies are very expensive, and the political backlash in the next few years, as production and subsidies double, will damage the effort to curb global warming.
On 15 May, 2009, U.S. Secretary of Energy Steven Chu announced that $2.4 billion from the American Recovery and Reinvestment Act will be used to expand and accelerate the commercial deployment of carbon capture and storage (CCS) technology.
At UN climate talks in Bonn, the world's poorest nations proposed a levy of about $6 on every flight to help them adapt to climate change. Benito Müller, environment director of the Oxford Institute for Energy Studies and author of the proposal, said that air freight was deliberately not included. The levy could raise up to $10 billion per year and would increase the average price of an international long-haul fare by less than 1% for standard class passengers, but up to $62 for people traveling first class.
In the light of those amounts, it doesn't seem unreasonable to expect that fees imposed on conventional jet fuel could raise billions per year. Proceeds could then be used to fund rebates on air capture of carbon dioxide, which could be pumped into the bags on location to enhance algae growth. Air capture devices could be powered by surplus energy from offshore wind turbines. With the help of such funding, the entire infrastructure could be set up quickly, helping the environment, creating job opportunities, making the US less dependent on oil imports, while leaving us with more land and water to grow food, resulting in lower food prices.
Cost of Carbon Air Capture
As to the cost of carbon air capture, GRT puts the current cost to harvest one ton of CO2 at $200 andestimates that, 2-3 years from now, it will cost about $150, while the price will come down to $30 to $20 as the technology is fully mature. 
Currently, carbon air capture isn't more expensive than to capture CO2 from smokestacks. The coal industry wants politicians to subsidize "clean coal", but current cost of capture (i.e. excluding transport and storage) is estimated at $100-150/tCO2 initially, possibly reducing to one third of that as the technology matures. That would price coal out of the market, while it doesn't even cover the cost of transporting the CO2 away from the plant and the subsequent sequestration, policing and monitoring all this over many years, etc.
Carbon air capture can be done at off-peak hours when cost of electricity needed for capture is low. Carbon capture from ambient air can also be done anywhere, meaning that it can take place on location, i.e. where the carbon is to be sequestered, which would save on the cost of transport. Or, even better, carbon capture can take place where the carbon is to be used for industrial or agricultural purposes, such as in greenhouses, algae bags or as soil supplements. By mixing carbon with hydrogen, the carbon can also be used to produce carbohydrates, i.e. synthetic fuel that could be used to power shipping and aviation. Such usage can help pay for the cost of carbon air capture.
 David Keith and his team are working to capture CO2 from ambient air Professor David Keith (left) of the University of Calgary is working on a tower, 4 feet wide and 20 feet tall, with a fan at the bottom that sucks air in. The tower looks like it's made mainly of plastic, which could be made with carbon produced by such a tower. Inside the tower, limestone or a similar agent is used to bind the CO2 and to split CO2 off by heating it up. The limestone is recycled within the tower, although it does need to be resupplied at some stage. Anyway, the main cost appears to be the electricity to run it. Keith and his team showed they could capture CO2 directly from the air with less than 100 kilowatt-hours of electricity per ton of CO2. At $0.10/kWh, that would put the electricity cost at $10 per ton.
In the U.S., each person emits about 20 tons of CO2 annually. In other words, each person in the U.S. could remove as much CO2 from the air with such a device, with annual operational costs of $200 for 2 Megawatt-hours of electricity. By comparison, a refrigerator consumes about 1.2 Megawatt-hours annually [2001 figures]. Of course, the additional cost of carbon disposal will make it more attractive to use large facilities at places where there's demand for carbon and where the associated economies of scale would facilitate lower operational costs. 

Towards a Sustainable Economy

The following comments were posted by Sam Carana under this knol:

Jul 19, 2010

There are several efforts under development to produce a carbon-neutral fuel. Two of them were recently described in article in New Scientist, entitled: Green machine: Cars could run on sunlight and CO2.
http://www.newscientist.com/article/dn18993-green-machine-cars-could-run-on-sunlight-and-co2.html
See also Sandia
https://share.sandia.gov/news/resources/releases/2007/sunshine.html

Whereas many may think that this is a good way to power cars, I agree with you that it makes more sense to have electric cars. However, aviation is a bit more difficult to clean up, that's why aviation in particular can benefit from such technology, and that would justify that aviation made financial contributions to fund such developments.

As air capture technology matures with financial assistance funded by fees on aviation, it will be in a better position to develop into a more general technology used to reduce CO2 in the atmosphere to more acceptable levels.
Jul 19, 2010
In my above reply, I referred to the use of concentrating solar power (CSP) plants to produce temperatures high enough to split water vapor into hydrogen and oxygen, and ambient carbon dioxide into carbon monoxide and oxygen. A team led by Athanasios Konstandopoulos has successfully managed to also split carbon dioxide into carbon monoxide and oxygen in this way. The hydrogen and carbon monoxide can subsequently be combined into hydrocarbons, i.e. synthetic oil.
http://www.newscientist.com/article/dn19308-the-next-best-thing-to-oil.html

Aug 27, 2010
An article in Nature describes the use of a solar cavity-receiver reactor to heat up non-stoichiometric cerium oxide to a temperature at over 1,500 °C, forcing the release of oxygen. Then, to re-oxidize it with H2O and CO2 at below 900 °C to produce H2 and CO – known as syngas, the precursor of liquid hydrocarbon fuels.
http://www.sciencemag.org/content/330/6012/1797

Jan 28, 2011

Milking algae

Instead of harvesting algae for processing into biofuel, there is prospect for "milking" the algae, i.e. extracting oil from the algae without killing them.

This method is followed by Joule Unlimited.
http://www.theglobeandmail.com/news/opinions/opinion/a-brave-new-world-of-fossil-fuels-on-demand/article1871149/

And also by Algenol, Synthetic Genomics (Craig Venter’s venture) and BioCee
http://theenergycollective.com/tyhamilton/50300/joule-cool-not-alone-quest-sunlight-fuel-game-changer

Jul 5, 2011

British company set to make renewable jetfuel

British company Air Fuel Synthesis plans to capture carbon dioxide from the air, and mix it with hydrogen extracted from water through electrolysis, in order to make liquid hydrocarbon fuels for transport, including for aviation.
http://www.airfuelsynthesis.com/technology.html
http://www.airfuelsynthesis.com/technology/technical-review.html
http://www.airfuelsynthesis.com/faqs.html


Monday, October 15, 2007

Agrichar

Bio-char pellets, EpridaMost households only use one or at most two different rubbish bins, one for recyclables (paper & packaging) and one for general waste. It makes a lot of sense to add a third type of rubbish bin, for biowaste, i.e. kitchen waste, soil and garden waste.

Many people already compost such biowaste in the garden, but all too often such biowaste disappears along with the general waste in the rubbish bin. As displayed on the picture below, analysis in Waikato, New Zealand, shows that about half of household waste can consist of kitchen waste, soil and garden waste. Such waste ends up on rubbish tips, where the decomposing process leads to greenhouse gases, such as methane. And all too often, farmers burn crop residues on the land, resulting in huge emissions of greenhouse gases.

What we throw away, Waikato, New ZealandAll such biowaste could deliver affordable energy by using the slow burning process of pyrolysis to produce agrichar or bio-char, a form of charcoal that is totally black. Organic material, when burnt with air, will normally turn into white ash, while the carbon contained in the biowaste goes up into the air as carbon dioxide (CO2). In case of pyrolysis, by contrast, biowaste is heated up while starved of oxygen, resulting in this black form of charcoal.

This agrichar was at first glance regarded as a useless byproduct when producing hydrogen from biowaste, but it is increasingly recognized for its qualities as a soil supplement. Agrichar makes the soil better retain water and nutrients for plants, thus reducing losses of nutrients and reducing the CO2 that goes out of the soil, while enhancing soil productivity and making it store more carbon.

When biowaste is normally added to soil, the carbon contained in crop residue, mulch and compost is likely to stay there for only two or three years. By contrast, the more stable carbon in agrichar can stay in the soil for hundreds of years. Adding agrichar just once could be equivalent to composting the same weight every year for decades.

Agrichar appears to be the best way to bury carbon in topsoil, resulting in soil restoration and improved agriculture. Agrichar has the potential to remove substantial amounts of CO2 from the atmosphere, as it both buries carbon in the soil and gets more CO2 out of the atmosphere through better growth of vegetation. Agrichar restores soils and increases fertility. It results in plants taking more CO2 out of the atmosphere, which ends up in the soil and in the vegetation. Agrichar feeds new life in the soil and increases respiration, leading to improvements in soil structure, specifically its capacity to retain water and nutrients. Agrichar makes the soil structure more porous, with lots of surface area for water and nutrients to hold onto, so that both water and nutrients are better retained in the soil.

In conclusion, recycling biowaste in the above way is an excellent method to produce hydrogen (e.g. for cars) and to bury carbon in the soil and improve production of food. Agrichar is now produced for soil enrichment at a growing number of places. The top photo shows agrichar in pellet form from Eprida. Australian-based BEST Energies has built a demonstration pyrolysis plant with a capacity to process 300 kilograms of biowaste per hour. It accepts biowaste such as dry green waste, wood waste, rice hulls, cow and poultry manure or paper mill waste. The plant cooks the biomass without oxygen, producing syngas, a flammable mixture of carbon monoxide and hydrogen. The agrichar thus produced retains about half the carbon of the original biowaste (the other half was burned in the process of producing the syngas).

Also important is to compare different farming practices. Carbon is important for holding the soil together. Farmers now typically plough the soil to plant the seeds and add fertilizers. This ploughing causes oxygen to mix with the carbon in the soil, resulting in oxidation, which releases CO2 into the atmosphere. Ploughing leads to a looser soil structure, prone to erosion under the destructive impact of heavy rains, flooding, thunderstorms, wind and animal traffic. Given the more extreme weather that can be expected due to global warming, we should reconsider practices such as ploughing.

Furthermore, the huge monocultures of modern farming have become dependent on fertilizers and pesticides. The separation of farming and urban areas has in part become necessary due to the practice of spraying chemicals and pesticides. Instead, we should consider growing more food on smaller-scale farms, in gardens and greenhouses within areas currently designated for urban usage. Vegan-organic farming can increase bio-diversity; by carefully selecting complementary vegetation to grow close together, diseases and pests can be minimized while the nutritional value, taste and other qualities of the food can be increased.

An issue of growing concern is nitrous oxide (N2O), which is 310 times more potent than CO2 as a greenhouse gas when released in the atmosphere. Much release of N2O is related to the practices of ploughing and adding fertilizers to the soil. Microbes subsequently convert the nitrogen in these fertilisers into N2O. A recent study led by Nobel prize-winning chemist Paul Crutzen indicates that the current ways of growing and burning biofuel actually raise rather than lower greenhouse gas emissions. The study concludes that growing some of the most commonly used biofuel crops (rapeseed biodiesel and corn bioethanol) releases twice the amount of N2O, compared to what the International Panel on Climate Change (IPCC) estimates for farming. The findings follow a recent OECD report that concluded that growing biofuel crops threatens to cause food shortages and damage biodiversity, with only limted benefits in terms of global warming.

All this is no trivial matter. Soils contain more carbon than all vegetation and the atmosphere combined. Therefore, soil is the obvious place to look at when trying to solve problems associated with global warming. By changing agricultural practices, we can add carbon to the soil and can minimize release of greenhouse gases.

References:

- Soils offer new hope as carbon sink
http://www.dpi.nsw.gov.au/research/updates/issues/may-2007/soils-offer-new-hope/

- Surprise: less oxygen could be just the trick
http://tinyurl.com/ywalt4

- What we throw away
http://www.waikato.govt.nz/enviroinfo/waste/whatwethrowaway.htm

- The Carbon Farmers
http://www.abc.net.au/science/features/soilcarbon/

- Living Soil
http://www.championtrees.org/topsoil/

- BEST Pyrolysis, Inc.
http://www.bestenergies.com/companies/bestpyrolysis.html

- Eprida, Inc.
http://eprida.com/hydro/

- Biofuels could boost global warming, finds studyhttp://www.rsc.org/chemistryworld/News/2007/September/21090701.asp

- Biofuels: is the cure worse than the disease?
http://tinyurl.com/yq9t8o

Companies producing agrichar:
- terra preta at bioenergylists.org
http://terrapreta.bioenergylists.org/company

Thursday, October 11, 2007

Pipes in the oceans to pump up water

Science Museum head Chris Rapley and Gaia theorist James Lovelock are suggesting to install flotillas of vertical pipes in the tropical seas. Free-floating or tethered vertical pipes could pump up nutrient-rich waters from below the thermocline in order to mix them with the relatively barren waters at the ocean surface.

Such pipes could be 100 to 200 metres long, 10 metres in diameter and with a one-way flap valve at the lower end in order to pump water upwards powered by by wave movement. The water pumped up this way could fertilize algae in the surface waters and stimulate them to bloom. More specifically, pumping up water through such pipes would result in an increased presence in the surface waters of the salp, a tiny tube-like species that excretes carbon in its solid faecal pellets. This carbon would subsequently descend to the ocean floor. The hope is that this could store carbon away for millennia on the ocean floor. 

An additional effect would be that the algae produced an abundance of dimethyl sulphide (DMS), a chemical that acts as the precursor of nuclei that form sunlight-reflecting clouds. As more clouds would form above the ocean, more sunlight would be reflected away from the Earth's surface, resulting in relative cooling of the ocean underneath. 

US company Atmocean has in fact already started trials with this type of technology, using pipes that bring cold water to the surface from a depth of 200m. 

References: 

- Mixing the oceans proposed to reduce global warming 

- Ocean pipes could help the Earth to cure itself 

- Lovelock urges ocean climate fix