Showing posts with label NASA. Show all posts
Showing posts with label NASA. Show all posts

Sunday, January 16, 2011

Global Warming Action Plan

All nations should commit to effective action to deal with climate change. Nations should each be able to decide for themselves how to do this, provided they each meet agreed targets independently and genuinely (i.e. without buying or fabricating offsets or credits, domestically or abroad). Where necessary, border adjustments can help ensure that commitments are indeed met. Some policies may aim to reduce emissions in one area, while causing emissions elsewhere. As an example, biofuel may reduce emissions of carbon dioxide (CO2) in transport, while increasing agricultural emissions, reducing forests and diverting crop, water and energy from better use. It is important for nations to each achieve results on each of the following points, without achievements in one area being counterproductive elsewhere. It is therefore recommended to take an approach that seeks results on each of the following points.

  Part 1. Reduce oceanic and atmospheric CO2

Target: Ensure that atmospheric CO2 levels do not exceed 400 ppm over the next few decades, while aiming for a longer term target of 350 ppm. James Hansen, NASA's top climate scientist, says in Target CO2: Where Should Humanity Aim? that atmospheric CO2 should be reduced to 350 ppm. To achieve this target, several policies will need to work in parallel with each other. 
  1.1. Dramatic cuts in CO2 emissions In many cases, dramatic cuts in CO2 emissions can be achieved merely by electrifying transport and shifting to generation of energy by clean facilities such as solar panels and wind turbines. emissions cut 80% by 2020Each nation should aim to reduce their CO2 emissions by a minimum of 8% per year over the next ten years, based on their 2009 emissions, and by 80% by 2020
  1.2. Carbon must also be actively removed from the atmosphere and the oceans A study at the University of Calgary concludes that, even if we completely stopped using fossil fuels and put no more CO2 in the atmosphere, the West Antarctic ice sheet will still eventually collapse (by the year 3000), causing a global sea level rise of at least four meters. This means that - apart from reducing emissions - there should be additional efforts to remove CO2 from the atmosphere and the oceans, in order to get CO2 down to levels as pictured on the above graph. Carbon is naturally removed from the atmosphere and the oceans by vegetation, so it makes sense to protect forests and encourage their growth. There are ways to reduce ocean acidification, such as by adding lime to seawater, as discussed at other posts of this geoengineering blog and at this geoengineering group. Carbon capture from ambient air and pyrolysis of surplus biomass with biochar burial are some of the most promising methods to further remove carbon from the atmosphere. Biochar can also help with afforestation and prevent deforestation and land degradation. Funding of carbon air capture could be raised through fees on jet fuel. All nations should commit to such initiatives — care should be taken that emission reductions are not substituted by carbon removal or vice versa. 

  Part 2. Short-term action 

The Arctic sea ice acts as a giant mirror, reflecting sunlight back into space and thus keeping Earth relatively cool, as discussed in this open letter. If this sunlight instead gets absorbed at higher latitudes, then feedback effects will take place that result in much higher temperatures, in a process sometimes referred to as Arctic amplification of global warming. The IPCC didn't take such feedback into account in AR4. A study that used 2007/2008 data as starting point predicts a nearly sea ice free Arctic in September by the year 2037, some predict an even quicker demise. A study by by National Center for Atmospheric Research (NCAR) scientist Jeffrey Kiehl found that carbon dioxide may have at least twice the effect on global temperatures than currently projected by computer models of global climate. Melting of ice sheets, for example, leads to additional heating because exposed dark surfaces of land or water absorb more heat than ice sheets. Albedo change is only one of a number of feedback processes. A rapid rise of Arctic temperatures could lead to wildfires and the release of huge amounts of carbon dioxide and methane that are now stored in peat, permafrost and clathrates, which constitutes further feedback that could cause a runaway greenhouse effect. Heat produced by decomposition of organic matter is yet another feedback that leads to even deeper melting.    
  2.1. Reduce methane and nitrogen oxide emissions Reductions in the emissions of methane and nitrogen oxide can be achieved by a change in diet, improved waste handling and better land use. Effective policies such as feebates can impose fees on nitrogen fertilizers and livestock products, while using the revenues to fund pyrolysis of organic waste. 
  2.2. Emissions of other pollutants than conventional greenhouse gases should also be reduced Both the Kyoto Protocol and the IPCC have focused much on reducing CO2 emissions, as well as other conventional greenhouse gases such as methane and nitrogen oxide. Melting in the Arctic carries the risk of huge additional emissions from peat, permafrost and clathrates, which calls for more immediate mitigation action. All nations should therefore commit to short-term mitigation — long-term mitigation efforts should not be substituted by short-term mitigation or vice versa. As this NASA study points out, for more effective short-term impact, drastic cuts should also be made in other pollutants, such ozone, soot and carbon monoxide. This is further illustrated by the image on the right that shows what causes most radiative forcing (W/m2) when taking into account all pollutants over a 20-year period, from a study published in Science. Reducing short-lived pollutants could significantly reduce warming above the Arctic Circle, finds a study published in Journal of Geophysical Research. A relatively cheap way to achieve such cuts is by encouraging the use of solar cookers and rechargeable batteries to power LED lights. Many types of equipment and appliances can also be powered this way, even when batteries are recharged by hand cranking or pedaling. Electrification of road transport is a crucial part of short-term action, as illustrated by the image, while generation of energy from clean facilities such as solar panels and wind turbines (as also discussed under part 1.1.) will further contribute to reductions in short-lived pollutants. Furthermore, reductions in short-lived pollutants can be achieved by preservation of forests, which justifies financial assistance by rich countries. As said, such assistance should not be used by rich nations as a substitute for domestic action — action is also required domestically by each nation, on all points. The desired shifts can often best be accomplished locally by budget-neutral feebates, i.e. fees on local sales of fuel, engines and ovens, each time funding the better local products, as illustrated by the image below. 
  2.3. Furthermore, consider ways to reflect more solar radiation back into space Discussions of ways to reflect solar radiation can be found at other posts of this geoengineering blog and furthermore at this geoengineering group

  Part 3. Adaptation 

 Look at policies that can help people, flora and fauna adapt to climate change. Rich nations are urged to give financial assistance to poorer nations, as well as to facilitate technology transfer, including by preventing that intellectual property protection acts as a barrier to such transfer. 
  3.1. Prepare for extreme weather events Look at safety issues from the perspective of a changed world. Prepare for hailstorms, heavy flooding, severe droughts, wildfires, etc., and grow food that fits such weather patterns best. 
  3.2. Preserve biodiversity Protection of rain forests is well covered in the media. Biodiversity can be further preserved by means of seed banks, parks and wildlife corridors. 
  3.3. Vegetate Fresh water supply and food security require extensive planning, such as selection of best crop. Build facilities for desalination both for fresh water in cities and to irrigate and vegetate deserts and other areas with little vegetation.
image from: Towards a sustainable Economy Leading global warming experts are invited to contribute comments and thoughts as to what constitutes an effective global warming action plan

Monday, May 4, 2009

Funding of Carbon Air Capture

Air capture of carbon dioxide is an essential part of the blueprint to reduce carbon dioxide to acceptable levels. Fees on conventional jet fuel seem the most appropriate way to raise funding to help with the development of air capture technology. Why target jet fuel? In most other industries, there are ready alternatives to the use of fossil fuel. Electricity can be produced by wind turbines or by solar or geothermal facilities with little or no emissions of greenhouse gases. In the case of aviation, though, the best we can aim for, in the near future at least, is biofuel. Technically, there seem to be no problems in powering aircraft with biofuel. Back in Jan 7, 2009, a Continental Airlines commercial aircraft (a Boeing 737-800) was powered in part by algae oil, supplied by Sapphire Energy. The main hurdle appears to be that algae oil is not perceived as price-competitive with fossil fuel-based jet fuel. Air Capture FundingAdditionally, the aviation industry can offset emissions, e.g. by funding air capture of carbon dioxide. The carbon dioxide thus captured could be partly used to produce fuel, which could in turn be used by the aviation industry, as pictured on the left. The carbon dioxide could also be used to assist growth of biofuel, e.g. in greenhouses. Algae can grow 20 to 30 times faster than food crops. A CNN report, more than a year ago, mentions Vertigro's claim to be able to grow 100,000 gallons of algae oil per acre per year by growing algae in clear plastic bags suspended vertically in a greenhouse. Given the right temperature and sufficient supply of light, water and nutrients, algae seem able to supply an almost limitless amount of biofuel. The potential of algae has been known for decades. As another CNN report describes, the U.S. Department of Energy (DoE) had a program for nearly two decades, to study the potential of algae as a renewable fuel. The program was run by the DoE's National Renewable Energy Laboratory (NREL) and was terminated by 1996. At that time, a NREL report concluded that an area around the size of the U.S. state of Maryland could cultivate algae to produce enough biofuel to satisfy the entire transportation needs of the U.S. In conclusion, it would make sense to impose fees on conventional jet fuel and use the proceeds of those fees to fund air capture of carbon dioxide. Apart from growing algae in greenhouses, we should also consider growing them in bags. NASA scientists are proposing algae bags as a way to produce renewable energy that does not compete with agriculture for land or fresh water. It uses algae to produce biofuel from sewage, using nutrients from waste water that would otherwise be dumped and contribute to pollution and dead zones in the sea. algae yieldThe NASA article conservatively mentions that some types of algae can produce over 2,000 gallons of oil per acre per year. In fact, most of the oil we are now getting out of the ground comes from algae that lived millions of years ago. Algae still are the best source of oil we know. In the NASA proposal, there's no need for land, water, fertilizers and other nutrients. As the NASA article describes, the bags are made of inexpensive plastic. The infrastructure to pump sewage to the sea is already in place. Economically, the proposal looks sound, even before taking into account environmental benefits. Jonathan Trent, lead research scientist on the Spaceship Earth project at NASA Ames Research Center, Moffett Field, California, envisages large plastic bags floating on the ocean. The bags are filled with sewage on which the algae feed. The transparent bags collect sunlight that is used by the algae to produce oxygen by means of photosynthesis. The ocean water helps maintain the temperature inside the bags at acceptable levels, while the ocean's waves also keep the system mixed and active. algaeThe bags will be made of “forward-osmosis membranes”, i.e. semi-permeable membranes that allow fresh water to flow out into the ocean, while preventing salt from entering and diluting the fresh water inside the bag. Making the water run one way will retain the algae and nutrients inside the bags. Through osmosis, the bags will also absorb carbon dioxide from the air, while releasing oxygen. NASA is testing these membranes for recycling dirty water on future long-duration space missions. As the sewage is processed, the algae grow rich, fatty cells that are loaded with oil. The oil can be harvested and used, e.g., to power airplanes. In case a bag breaks, it won’t contaminate the local environment, i.e. leakage won't cause any worse pollution than when sewage is directly dumped into the ocean, as happens now. Exposed to salt, the fresh water algae will quickly die in the ocean. The bags are expected to last two years, and will be recycled afterwards. The plastic material may be used as plastic mulch, or possibly as a solid amendment in fields to retain moisture. A 2007 Bloomberg report estimated that the Gulf of Mexico's Dead Zone would reach more than half the size of Maryland that year and stretch into waters off Texas. The Dead Zone endangers a $2.6 billion-a-year fishing industry. The number of shrimp fishermen licensed in Louisiana has declined 40% since 2001. Meanwhile, U.S. farmers in the 2007 spring planted the most acreage with corn since 1944, due to demand for ethanol. As the report further describes, the Dead Zone is fueled by nitrogen and other nutrients pouring into the Gulf of Mexico, and corn in particular contributes to this as it uses more nitrogen-based fertilizer than crops such as soybeans. The Louisiana coast seems like a good place to start growing algae in bags floating in the sea, filled with sewage that would otherwise be dumped there. It does seem a much better way to produce biofuel than by subsidizing corn ethanol. According to zFacts.com, corn ethanol subsidies totaled $7.0 billion in 2006 for 4.9 billion gallons of ethanol. That's $1.45 per gallon of ethanol (or $2.21 per gallon of gas replaced). As zFacts.com explains, besides failing to help with greenhouse gases and having serious environmental problems, corn ethanol subsidies are very expensive, and the political backlash in the next few years, as production and subsidies double, will damage the effort to curb global warming. At UN climate talks in Bonn, the world's poorest nations proposed a levy of about $6 on every flight to help them adapt to climate change. Benito Müller, environment director of the Oxford Institute for Energy Studies and author of the proposal, said that air freight was deliberately not included. The levy could raise up to $10 billion per year and would increase the average price of an international long-haul fare by less than 1% for standard class passengers, but up to $62 for people traveling first class. In the light of those amounts, it doesn't seems unreasonable to expect that fees imposed on conventional jet fuel could raise billions per year. Proceeds could then be used to fund rebates on air capture of carbon dioxide, which could be pumped into the bags on location to enhance algae growth. Air capture devices could be powered by surplus energy from offshore wind turbines. With the help of such funding, the entire infrastructure could be set up quickly, helping the environment, creating job opportunities, making the US less dependent on oil imports, while leaving us with more land and water to grow food, resulting in lower food prices.

Blueprint of a Sustainable Economy