Showing posts with label Aaron Franklin. Show all posts
Showing posts with label Aaron Franklin. Show all posts

Wednesday, May 20, 2015

Kelp Farming and Ice Dyking

Aaron Franklin
Kelp farming and ice dyking for habitat enhancement 
and carbon-negative fuels and chemical production.

By Aaron Franklin

A purpose-built craft like this Ground effect plane / hovercraft triphibian concept could be ideal.

The laterally-rigid sideskirts with vertically-flexible surface-contouring ski bottoms would allow transitions between air, water, ice, snow, earth surfaces of all types and the waterscoop tail could directly hose the water onto the ice with foil effect to counter lateral reaction thrust. Snow making, firefighting, and ecology seeding also in its functionality.


At pumping of 10tons per second, 50m x 100m/s = 5000sqm, 10000kg/5000sqm = 2 kg per sqm per pass. About 2mm per pass.

If we assume conditions that will allow 2 mm to freeze in 30 seconds. then 4mm per minute = 240mm per hour = 5760mm (near 6m thick) per day could be made of 50m wide by 100m/s x 30s = 3km long of icedyke by a mobile spray vehicle at 100m/s.

3000m x 6m x 50m = 900 000 tons per day of ice making.

A fleet of 50 working for 100 days therefore could make 5000 x 900 000 = 45 000 000 000 tons or near 5 cubic kilometers of ice. 

If we are looking at an average needed to ground them of say 30m thick, then 50m wide is cross section area of 1500 sqm.

5 000 000 000 cubic m / 1500 sqm = 3.33333 million meters or 3333 km.

A ball park figure of 1000kw vehicle power would seem adequate to do this.

Very likely a rope mesh reinforcement would need to be floated on the water and anchored in place to hold together the dyke that has been formed. Doing this work in polynyas seems the best way, then towing into position of sections to be anchored and further thickened.

If 100 such vehicles were used you've got near seven thousand km of icedyke which could be enough for such a layout as this:
Kelp farming, by Aaron Franklin, on background image by Shakhova et al., 2010

For methane plume hotspots to the surface, hexagonal tiles would need to be formed and towed into place, if they are too rich for ice to form inside the rings in situ.

Stationary pumping systems might have to high costs per area in most places with limits to small volumes per pump due to area feasible to distribute the water to and ice layup rates. Though in saying this, high cost is often seen as a benefit for commercial interests. They can make more money doing it the hard way.

The purposes of kelp farming in the less methane emissive areas is as follows:
  • Biomass for biofuels and biochemicals of around 500 ton per hectare per year can be harvested.
  • The growing kelp oxygenates the water to support consumption of methane and river in-flux of organic carbon.
  • The artificial kelp forests provide habitat and food for a diverse and rich ecology with fisheries and abalone/ mussel/ crabs / lobster etc farming potential
  • Unlike micro algae, the kelp biomass is easily harvested, so it would not rot and cause oxygen depletion of the water at the end of summer.
  • Sedimentation rates and water clarity are vastly improved by the kelp forests, thereby improving albedo and enhancing natural carbon burial in sediments.
  • Simple and low cost infrastructure only is neccessary to process the kelp locally into liquids for low transport costs to refineries for further upgrading.
  • It would be easy to use the CO2 from an initial biomass pyrolysis to convert methane collected nearby to methanol for easy low cost transportation.
Combining these systems would allow zero carbon emission liquid fuels via the energy component of the fossil methane and biomass being used as hydrogen and the carbon turned into biochar and high performance bioglues and recyclable polymers, allowing further long-term carbon sequestration by wood, biofibre, etc., and component for construction materials, also replacing high carbon-emission steel, concrete etc.

Tuesday, May 7, 2013

ElectroStatic, NanoCone, Ion Gun, Vortex Separated, Ideal Drop Size, Saltwater Cloud-Cannons

Aaron Franklin
By Aaron Franklin

The apparatus consists of a vertical cylindrical wind-rotor, the interior of which is used as an ideal drop size cloud making machine.
  • The inside surface of the cylindrical wind rotor has metal coated polyester film laminated to it with the metal coated surface facing inwards.
  • The Metal coated Polyester film has been coated with a light sensitive emulsion, photo-exposed in a lattice of dots, and etched to produce an array of nano-cones on the surface of the metal, surounded by a hexagonal lattice of valleys.
  • Spaced by insulators, a few millimeters from the nano-cone surface, is a concentric cylinder of metal mesh. This will probably be silver wire mesh of around 1mm grid spacing and 0.1mm wire gauge.
  • At the centre of the cylinder is a non-rotating, star buttressed spar.
  • The star buttressed spar has microbubble aerated water plumbed through it, to a regularly spaced grid of de-Lavel nozzles, of around 1mm diameter, aiming tangentially at the inside of the rotor, from the outer tips of the star buttress.
  • The water supply aeration is around 50%, with the bubble size controlled to around 0.1mm. This should produce an atomised spray of water droplets around 0.1mm diameter, from the de-Lavel nozzles.
  • The 0.1mm water droplets transfer their energy to rotor rotation, and air vortex motion, in the cylinder of air close to the inner surface of the rotor cylinder.
  • The 0.1mm water droplets pass through the metal mesh, and land on the nanocone surface, producing a thin film of water.
  • A high frequency, high voltage, alternating electric potential is supplied between the nano-cone metal film, and the metal mesh.
  • When the voltage peaks the electric field will cause each Nano-cone to jet a charged micro-droplet of water. The apparatus will be tuned so that these droplets will be around half the ideal size for our perfect clouds.
  • The opposite charge on the metal mesh, will accelerate each charged droplet. The Voltage frequency will be such that the droplet reaches the mesh at the time that the polarity has fully reversed. This will ensure that the droplet passes through the mesh, and is carried by its momentum to the non-rotating airmass at the centre of the rotor.
  • As droplets of alternating polarity are being fired into the rotor-core, each droplet will quickly be attracted to an oppositely charged droplet, combining to form a neutral droplet of the Ideal Size.
  • At the bottom of the rotor cylinder the de Lavels are pointed a little upward to induce a helical input of air-large droplet mixture, entraining and sucking in air from the open bottom of the rotor.
  • The axiswise upward angling of the lower de Lavels reduces the further up the rotor you go, reaching pure tangential before the top. This will create an inwards airflow towards the rotor axis.
At droplet sizes of 8.e-12 litres, 20m rotor 2m diameter = 120sqm of nanocones, nanocone grid spacing 0.2 mm =25 /sqmm= 25 000 000 /sqm = 3 billion, and 5khz electric field....120 litres per second of ideal droplets could be released by this system.
At an average velocity from nanocone to grid of each droplet of 30m/s = 30 000 mm per second... the droplet will travel 3mm in 1/10000 of a second- the time taken for the 5khz field to reverse polarity.  So with these numbers, 3mm gap between the Nanocone surface and the metal mesh seems appropriate.
Tuning will have to allow for evaporative losses from the droplets, however as all the droplets will have the same size and velocity, this should be an easy task.
It may not be necessary at all to use electrostatics. Larger helical angled de Lavels at the bottom of the rotor creating a vortex seperation system where too large droplets impact the inner surface of the rotor, and small enough ones exit at the top may work adequately. A fatter at the bottom, tapered rotor would work well in this case, as it would help expel out the bottom, the waste flow from the too large droplets centrifically.
Star buttresses may not be neccesary on the central spar, particularly with the non-electric version.
Filtering requirements are low, particles smaller than 0.1mm should cause no problems for the electro version, smaller than 1mm no probs at all for the pure vortex model.

Tuesday, March 5, 2013

Supersonic and high velocity Subsonic Saltwater and Freshwater Cloud Making Cannons

Aaron Franklin
By Aaron Franklin

As a compliment to cloud brightening systems, these for use in calm blue sky conditions, or windy blue sky conditions, over Ocean, sea and glacial ice, and land permafrost.

Also may be very important this year for as high tech cloud brightening/making doesn't look like it will be easy to get out in large unit numbers, while there is existing firepump systems that are available in numbers we need now.

Also are essentially no different from snowmaking gear used on ski fields, except for making snow, lower velocity is fine, and no CCN's are required. Just air below 0C, and freshwater.

- High pressure / high volume fire-fighting/water cannon pump gear can be used as is, or modified for higher pressure and kW capacities to increase output volumes at similar nozzle velocities.

An aerated system looks best at this point because:
  • By using de Laval nozzles ( convergent-divergent, supersonic and tight stream output ) the aerated water can be accelerated by expansion to high velocity or Supersonic speed as it leaves the divergent exit section of the nozzle.
  • Nozzle friction is reduced because air sticks to the surface and creates a gaseous boundary layer.
  • For Aeration, copper or soft stainless tubes CNC laser perforated, swaged to flare to hexagonal ends, stacked for a honeycomb aeration section (just like a ww2 spitfire radiator except they had the water on the outside of the tubes and no holes) fed with compressed air, in the water feed before the pumps can entrain microbubbles in the water. 
  • Alternatively supersonic streams can be achieved with unaerated water with convergent nozzles, but more pressure is required.
  • The high kinetic energy of the water stream will cause excellent dispersion, and evaporation, via transonic shockwaves as the stream slows, shedding its outer layer as it goes, eventually disintegrating completely either below the altitude where enough kinetic energy, has converted to gravitational potential energy for the stream to go transonic if the stream is below a critical diameter, or not far above that altitude if its above that diameter.
  • If its a high velocity Subsonic jet it will still shatter the droplets and evaporate lots of, if not all of them by air turbulence and high differential speed energy conduction/friction evaporation.
  • We need to look at freshwater versions as well. This because saltwater rain will be fine over open oceans but it landing on ice and land permafrost will make them melt faster. And saltwater rain on land living ecologies is not at all good either. There's going to be a big use for them to protect the land permafrosts with cloud cover too. Freshwater versions will benefit from using water with diatoms growing in it, as these act as cloud droplet condensation nuclei, just like salt crystals.

    Seeding tundra lakes with diatoms will also eat CO2, oxygenate the water enhancing aerobic digestion of dissolved methane and other organic carbon. Removing the diatoms with the water for cloud cannons will also remove excess nutrients from the waters, provide aeration for skyborne digestion of DOC to CO2, and will clean up lakes to make them better for winter snow-making watersources.
  • We're going to need to straffe the sky with these things for best cloudmaking effect, so we need to get ready to mount them on naval gun turrets with computer controlled tracking systems and look into parking tanks and APC's with suitable turrets on container ship decks.

    Using these tanks and APC's, maybe fixed installations when the wind is blowing, with cloud-cannons on the arctic tundras can help protect the permafrosts. 

Calculations and conclusions, for peer review:

These are based on a sonic speed case. Faster will give more range but less volume and slower more volume but less range, for a given pump system.

speed of sound 330m/s

Ep= mgh

Ek= 0.5mv^2

Ek sonic (1 kg water)= 0.5 x 1 x 330^2 = 54450J

54450=mgh=1 x 9.8m/s^2 x h

vertical ballistic altitude h=54450/9.8 = 5.556km


cloud water content = 0.3g/m^3

10m thickness= 3g/m^2

100m thickness= 30g/m^2

4 sqkm= 4,000,000 m^2


Fixed position still air straffing:

A=pi.r^2

r=sqrt(A/pi)


4 sqkm horizontal Cannon range r = sqrt(4/pi)= 1.12km


Moving ship, land tanker, or wind blowing fixed position straffing:

14m/s = 50km/hr (vehicle or wind velocity)

-4 sqkm per hr requires only 4/50= 80m watercannon range.


Water volume and flow rates:

4sqkm at 10m thick= 12000 liters= 12 tons (less than 10min with flow rates of existing fire pumps)

at 100m thick = 120 tons (could be less than an hour per firepump)

1 small Supersonic cloud cannon could produce 24hr x 4sqkm/hr = 96sqkm of 100m thick cloud per day.


Kinetic energy:

120,000 liters per hr / 3600 = 33.3 L/s

12,000 liters per hr / 3600 = 3.3 L/s

Ek Sonic 1kg = 54.45 kJ


kW 100m thick, 4sqkm cloud layer in an hr = 33.3 L/s x 54.45kJ = 1813 kW

- existing pump designs would need to be upgraded for higher power/pressure to produce this much cloud, if supersonic velocities are required, but this is a very small engineering challenge. Ships trawler size and up, and tanks have more than enough kWs for the job. Rapid small amplitude vertical oscillation of the jet release angle should lay down the average 100m thick cloud bank aimed for.

kW 10m thick, 4sqkm cloud layer in an hr = 3.3 L/s x 54.45kJ = 181.3 kW

- this looks good for mobile straffing with existing fire pumps, provided aerated water and deLavel nozzles are used to produce supersonic velocities. The range required for 4 sqkm per hr coverage at only 80m is no problem for the small volume, aerated supersonic water flows possible from existing fire pumps.


Latent heat of evaporation and Ek sonic considerations:

latent heat of evaporation water = 2260 kJ per L

Ek sonic water = 54.45 kJ per L

  • If the very small water droplets produced by transonic shockwaves shattering any water breaking from the decaying jet should partially or fully evaporate (this will depend on stream velocity) they will be doing this by absorbing a lot of heat from the air they are landing in. This will cool and supersaturate the air with water vapour, and result in rapid droplet condensation in both saltwater and freshwater versions proposed.
  • I am advised that we can expect around 60% humidity levels in arctic conditions. As the evaporative cooling effect will cool the air that the stream droplets land in, and vast quantities of very small cloud nucleation salt crystals will be formed, we can expect a lot more cloud to be formed than the above examples suggest.
  • Aeration should result in more and smaller salt crystals, and droplets. In part due to microbubbles enhancing droplet fragmentation. Also due to supersaturation of the water with air, enhanced by evaporation. This causing many disturbances per drop as new bubbles precipitate, and initiate many salt crystals per droplet to precipitate. Turbulence will also initiate precipitation of air and salt crystals in the supersaturated droplet.
  • How much extra cloud will depend on how much atmosperic turbulence and mixing is generated by the straffing pattern, and on local temperature and humidity conditions.
  • Less mixing will also result in larger cloud droplets.
  • Too much mixing will run the risk of forming little cloud at all, as the humidity levels may be too low to form any droplets at all around the salt crystals.
  • It's quite likely that 500-600kph will be sufficient velocity. This would produce about 15 litres per second from standard firepump gear. A good estimate seems to be that this would initially produce around 100sqkm of 100m thick cloud bank per day. However from what I am hearing there is likely to be a repeating cycle of droplet evaporation - re nucleation of new droplets - back to droplet evaporation, due to the added water vapour and downwind cooling effects. So total cloud produced may be more than this.
  • We should start testing on these ASAP. Others doing testing too, would be a good thing.

An integrated systems plan for 10 year carbon pumpdown to 280ppm

Aaron Franklin
By Aaron Franklin

There's little point getting too distracted with talk on how to reduce human CO2 emissions until we have succeeded in reversing the Arctic sea-ice crash.

However, as geoengineering for this will be an ongoing annual commitment until CO2 is back in the region of 280ppm, we do need a plan to pump carbon out of the atmosphere and the sea (where 60% of the 500 Gton total human contribution is residing.)

Current estimates are 56.4 billion tonnes C/yr (53.8%), for terrestrial primary production, and 48.5 billion tonnes C/yr for oceanic primary production.

It's been learned that the primary ocean production has fallen by nearly half in the last 100 years. The reduction in windblown dust from irrigation and cultivation of arid areas and the prolonging of the growing season of grasses in arid areas by CO2 increases is most likely the biggest cause of this. This has resulted in the amount of natural wind-borne iron-carrying dust falling dramatically, 30% over the past 30 years alone.
  • Tropical rainforests have globally 8 million square km with biomass productivity of 2000g Carbon per square meter for a total of 16 Gtons of Carbon per year. Doubling this area would only get near an extra 16 Gtons of annual carbon pulldown after 1 to 2 decades and with studies showing drought stress already turning Amazon and stheast Asian rainforests now net CO2 producers rather than removers no gains might occur at all.

  • Temperate forests have globally 19 million square km with biomass productivity of 1,250g Carbon per square meter for a total of 24 Gtons of Carbon per year. Doubling this area would only get near an extra 24 Gtons of annual carbon pulldown after 1 to 2 decades, and then would need a further 20 years to remove the 500 Gton existing carbon debt, and thats assuming that 100 percent of carbon taken in by these trees can be kept away from consumers and decomposers.

  • The Oceans have globally 350 million square km with average biomass productivity of 140 gC/m²/yr for a total of 48.5 Gtons of Carbon per year. This is heavily weighted towards coastal areas at present. The open Oceans are 311 million sqkm with average biomass productivity of 125 gC/m²/yr and a total of 39 Gtons of Carbon per year, however, as can be clearly seen on the map below, some 80% of the ocean are so isolated from land sourced nutrient inputs that their productivity is about 1/100 of the most productive oceanic zones.

 map of the earth showing primary (photosynthetic) productivity, from: http://upload.wikimedia.org/wikipedia/commons/4/44/Seawifs_global_biosphere.jpg

Oceanic desolate zone at 80% of 311 million sqkm is 249 million sqkm. 50 GtonsC/249million = 201 tonsC per sqkm per year = 200g C per sqmeter per year average. With prime coastal Aquatic enviroment like estuarys and coral reefs producing 10x that at 2000+ gC/sqm it would seem very achievable to increase the deep ocean productivity this much.

Doubling the productivity of the oceans could pump down the global 500 Gton Carbon burden in as little as 10 years and is possible, affordable, already very well studied.

In the currently near sterile central oceans the absence of an existing foodchain would ensure most of this Phytoplankton Carbon will die and sink a couple of hundred meters into the tidal mixed layer.

This can be a problem....

The amount of organic carbon needed to completely remove all oxygen from the WHOLE ocean as it is decomposed by bacteria is thought to be 1000 Gton C. Just letting the phytoplankton sink into the tidal mixed zone, which is low in oxygen already, would be a very bad idea. Back to this later.

As can be seen on the front page graphic of: http://www.aslo.org/meetings/Phytoplankton_Production_Symposium_Report.pdf
The benefits of iron fertilization alone are only achievable in the Nutrient Rich Iron Depleted zones of the southern ocean to 35degr sth, the equatorial oceans to 20degr sth and 10degr nth, and the nth pacific from 40 degr nth. These areas can easily be stimulated urgently.

At the low figure of 1 million tonC/1ton Fe we would annualy need 50GtC/1MtC= 50000 tons of iron dust -bugger all.

Antarctic krill have a total fresh biomass of up to 500 million tons. This will increase several times over when we iron fert the southern ocean.

The rest of the desolate zones need nitrogen and phosphorus. Rather than using mined phosphates and CO2 producing urea for nitrogen there are these alternatives:

  • Natural volcanic ash. There are concerns about heavy metal contamination from this but as long as we stick to siliceous ash from recycled seafloor volcanism we should be pretty OK.
  • Wave pumped chimneys. Tested already, these pump nutrient rich deep benthic water via wave power. We would however need millions of these due to scale limitations imposed by ocean wavelengths.
  • Chimneys driven by submarine volcanism. An idea I was looking at 10 yrs ago (dibs on the carbon credits, giggles, could make me a trillionaire) this could quickly fill the oceanic gyres of the desolate zones with all the deep benthic and volcano enriched nutrients needed.
  • Good old fashioned blood and bone. Puree krill from the southern ocean and fert the low nutrient desolate zones.

Simultaneous with fertilising the desolate zones we'll need to seed them with the best diatoms and suitable higher temp krill species such as north pacific, common in the sea of Japan. It would be possible to multiply world krill population 100x, to the region of 50 Gtons, making them the biggest living carbon store on the planet

Krill are looking very good for Ocean Fertilization for a number of reasons:

a) Getting phytoplankton produced carbon to seafloor or depth.

- Approximately every 13 to 20 days, krill shed their chitinous exoskeleton which is rich in stable CaCO3.
- Krill are very untidy feeders, and often spit out aggregates of phytoplankton (spit balls) containing thousands of cells sticking together.
- They produce fecal strings that still contain significant amounts of carbon and the carbonate/silica glass shells of the diatoms.

These are all heavy and sink very fast into the deep benthic zone and ocean floor. Oxygen levels are higher down there, and the deep benthic zone is much larger in volume than the rest of the worlds oceans. Besides which, unlike Phytoplankton alone, the spitballs and fecal strings stand a much beter chance of not being decomposed and using up oyxgen. The exoskeletons won't be decomposed at all.

Quote wikipedia: "If the phytoplankton is consumed by other [than krill] components of the pelagic ecosystem, most of the carbon remains in the upper strata. There is speculation that this process is one of the largest biofeedback mechanisms of the planet, maybe the most sizable of all, driven by a gigantic biomass"

b) They can be dried and pressed for krill oil. Krill oil can be used directly for biodiesel or as food suppliments.

c) Dried krill (pressed or not),( and any other biomass) can be pyrolysised for gas, pyrolysis oil for existing power plants, and these can have their flue CO2 fed into algae ponds for negative carbon energy.

- The pyrolysis oil can be used directly for large diesels like ships and heavy machinery.

- The water soluble portion of pyrolysis oil can be used for timber construction adhesive for plywoods, chipboards, and laminated beams etc

- Existing refineries can produce bio-petrols, bio-diesels, and bio-plastics from pyrolysis oil with little modification.

- Pyrolysis also produces biochar, which is terrific fertiliser. Producing soils called Terra Preta that are able to sequester fresh carbon from humus, water and nutrients better than any other soils on the planet, and holding fertility for thousands of years. This is the best and safest way to bury carbon.

d) Krill are delicious nutritious food for humans to replace massively methane emitting beef/sheep/goats and reforest this pastoral land with food-forests and indigenous ecologies.

e) Krill are the best food for a large number of fish and whale species. Putting carbon into living marine biomass is a safe store, and replacing the carbon that we have lost by depleting those stocks.

f) Krill are very efficient phytoplankton harvesters, sometimes reaching densities of 10,000–30,000 individual animals per cubic metre. They quickly swarm to any plankton bloom in the area.

Using them to harvest phytoplankton, and then using simple krill nets on the worlds fishing fleet, is much easier than getting phytoplankton out of the ocean ourselves, as that requires energy intensive centrifuge separation of large quantities of water.

g) Krill Females lay 6,000–10,000 eggs at one time, and they reach maturity after 2-3 years.

- Obviously they can quickly build biomass to any level we can provide food for. Particularly if we are putting them in fresh habitat where small fish that normally consume lots of tiny immature krill are absent.

If we increased the total biomass of krill to 50 Gton fresh biomass as suggested above, that would be about 10 Gton C, then we could remove this amount of Carbon from the ocean every 2 years, this alone has the potential to remove 100 Gton C from the ocean/atmosphere in twenty years.

As krill are such messy feeders, inefficient digesters and shed carbonate rich exoskeletons every 2-3 weeks, they probably would sink to the ocean floor to relatively safely aggregate into sediments, stable carbonate and undecomposed organic carbon around 100 times as much as that. So burying 500Gton C of CO2 in one year would be possible.

Obviously we only need to increase Krill populations by 10x to get the result we need in about 10 years total including the breed up time.

We'd be best to harvest as much as possible to refertilise and replace the carbon in our soils. Remember that about 600 Gton C of carbon from our soils has gone into the oceans already in the last 2000 years.