Showing posts with label food. Show all posts
Showing posts with label food. Show all posts

Thursday, November 29, 2012

A Comprehensive Plan of Action on Climate Change


Threat to global food supply makes comprehensive action imperative
Climate change is strongly affecting the Arctic and the resulting changes to the polar vortex and jet stream are in turn contributing to extreme weather in many places, followed by crop loss at a huge scale.

The U.N. Food and Agriculture Organization (FAO) said in a September 6, 2012, forecast that continued deterioration of cereal crop prospects over the past two months, due to unfavourable weather conditions in a number of major producing regions, has led to a sharp cut in FAO’s world production forecast since the previous report in July.

The bad news continues: Based on the latest indications, global cereal production would not be sufficient to cover fully the expected utilization in the 2012/13 marketing season, pointing to a larger drawdown of global cereal stocks than earlier anticipated. Among the major cereals, maize and wheat were the most affected by the worsening of weather conditions.

The image below is interactive at the original post and shows the FAO Food Price Index (Cereals), up to and including August 2012.

from: Threat to global food supply makes comprehensive action imperative
Apart from crop yield, extreme weather is also affecting soils in various ways. Sustained drought can cause soils to lose much of their vegetation, making them more exposed to erosion by wind, while the occasional storms, flooding and torrential rain further contribute to erosion. Higher areas, such as hills, will be particularly vulnerable, but even in valleys a lack of trees and excessive irrigation can cause the water table to rise, bringing salt to the surface.

Fish are also under threat, in part due to ocean acidification. Of the carbon dioxide we're releasing into the atmosphere, about a third is (still) being absorbed by the oceans. Dr. Richard Feely, from NOAA’s Pacific Marine Environmental Laboratory, explains that this has caused, over the last 200 years or so, about a 30% increase in the overall acidity of the oceans. This affects species that depend on a shell to survive. Studies by Baumann (2011) and Frommel (2011) indicate further that fish, in their egg and larval life stages, are seriously threatened by ocean acidification. This, in addition to warming seawater, overfishing, pollution and eutrification (dead zones), causes fish to lose habitat and is threatening major fish stock collapse.

Without action, this situation can only be expected to deteriorate further, while ocean acidification is irreversible on timescales of at least tens of thousands of years. This means that, to save many marine species from extinction, geoengineering must be accepted as an essential part of the much-needed comprehensive plan of action.

Similarly, Arctic waters will continue to be exposed to warm water, causing further sea ice decline unless comprehensive action is taken that includes geoengineering methods to cool the Arctic. The threat that huge amounts of methane will be released from the warming Arctic seabed makes it imperative to prepare geo-engineering methods to respond to this threat and be ready for rapid deployment soon.

How to avert an intensifying food crisis

As extreme weather intensifies, the food crisis intensifies. Storms and floods do damage to crops and cause erosion of fertile topsoil, in turn causing further crop loss. Similarly, heatwaves, storms and wildfires do damage to crops and cause topsoil to be blown away, thus also causing erosion and further crop loss. Furthermore, they cause soot, dust and volitale organic compounds to settle on snow and ice, causing albdeo loss and further decline of snow and ice cover.

Extreme weather intensifies as the Arctic warms and the polar vortex and jet stream weaken, which is fueled by accelerated warming in the Arctic. There are at least ten feedbacks that contribute to further acceleration of warming in the Arctic and without action the situation looks set to spiral away into runaway global warming, as illustrated by the image below.

Diagram of Doom, with Comprehensive Plan of Action added  (credit: Sam Carana, October 9, 2012)



To avert an intensifying global food crisis, a comprehensive plan of action is needed, as also indicated on the image. Such a plan should be comprehensive and consider action in the Arctic such as wetland management, ice thickening and methane management (methane removal through decomposition, capture and possibly extraction).

A Comprehensive Plan of Action on Climate Change

A Comprehensive Plan of Action on Climate Change needs to include policies to achieve a sustainable economy, as well as adaptation policies.

Such a comprehensive plan is best endorsed globally, e.g. through an international agreement building on the Kyoto Protocol and the Montreal Accord. At the same time, the specific policies are best decided and implemented locally, e.g. by insisting that each nation reduces its CO2 emissions by a set annual percentage, and additionally removes a set annual amount of CO2 from the atmosphere and the oceans, followed by sequestration, proportionally to its current emissions.

Policy goals are most effectively achieved when policies are implemented locally and independently, with separate policies each addressing a specific shift that is needed in order to reach agreed targets. Each nation can work out what policies best fit their circumstances, as long as they each independently achieve agreed targets.

Cuts in CO2 emissions of 80% by 2020 can be achieved by implementing local policies focusing on specific sectors (such as energy production, transport, land use, waste, forestry, buildings, etc).

As an example, each nation could add fees on jetfuel. Where an airplane lands that comes from a nation that has failed to add sufficient fees, the nation where the airplane lands could impose supplementary fees and use the revenues to support methods that capture CO2 directly from ambient air. Such supplementary fees should be allowed to be imposed under international trade rules.

Some policies will need to continue beyond 2020, in order to bring down levels of greenhouse gases in the atmosphere to their pre-industrial levels this century, i.e. getting CO2 in the atmosphere back to 280ppm, CH4 back to 700ppb and N2O back to 270ppb. Policies can be very effective when focusing on local sectors such as agriculture and buildings, while also supporting geo-engineering methods such as biochar, enhanced weathering and direct capture of carbon from ambient air.

In addition to such policies to achieve a sustainable economy and adaptation policies, further geo-engineering methods will be needed to avoid runaway warming, as indicated in the blue area of the image below.


Arctic Methane Management

At the original post, some of the areas in these images can be clicked on, for examples or more background. The box for Additional Arctic Methane Management on above image is further worked out in the image below, which highlights the need for geo-engineering methods that focus on methane, a component of the plan that needs to be given far more attention. Again, support for such methods could be agreed to proportionally to each nation's current emissions.

Monday, October 15, 2007

Communities without Roads

Communities without roads is an exciting concept that allows people to live within walking distances of colleages, customers, friends, medical and educational facilities, shops, restaurants, etc. The sedentary lifestyle of many people is a result of the way cities are currently designed. Instead, we should facilitate the opposite, i.e. people coming out of their houses, offices, and especially their cars, in order to meet other people, getting better food and becoming more healthy in the process.

The car has come to dominate the urban landscape, resulting in a metropolitan conglomeration of suburbs, stringed together along highways. Our most fertile land is now used for roads and cars, and the industries needed to support them. About half the urban area is for buildings, mainly three-bedroom homes on small blocks of land. The other half is used for roads, parks and grassland between roads. A large part of roads, buildings and gardens is also used to park cars.

Ever less fertile land is available food. Global warming forces us to rethink all this. As prices of oil skyrocket, more land is being dedicated to grow bio-fuel, resulting in less land available for food. Also, more extreme weather conditions can be expected, resulting in increasing crop loss.

We need more land to grow fruit and vegetables, in ways as was once the case in traditional gardens and on smaller farms. One place to find such land is by converting roads and office blocks into gardens. This doesn't mean a return to those ‘good-old-days’ of small towns and villages. Instead, we should consider an entirely new type of urban design: communities without roads. Technological progress is not the enemy here. Better security and communication systems can help get such communities off the ground. Electric vehicles can be instrumental in getting such communities off the ground.

What I propose are communities with footpaths and bike-paths instead of roads. Houses would be built close together, around a local center of shops and restaurants. In communities without roads, houses could be smaller, since there's no need to park cars in front or in garages. Building houses close together itself reduces travel distances between them. Pathways to a nearby center could suffice for further daily travel, leading to shops, markets, restaurants, lecture and meeting rooms.

In such a center, people would conveniently eat in restaurants, without traffic and parking hassle and noise - just a short stroll by foot or ride on a bike or in an electric scooter. Eating out means less shopping, since food makes up most of our shopping. It also saves a lot of time - no more shopping, cooking, dishwashing and cleaning, no rubbish to get rid of. Walking more would be good for our health as well.

Living closer together means people could see each other more often, both at home or at such a nearby restaurant. Why travel to an office or University, when you can work or follow courses online? Homeschooling has long proven to be much more effective than school. Why should people be institutionalized, kids packed away into school, the elderly people into ‘homes’ and the sick in hospitals? Instead, we should encourage families to stay together as much as possible and as long as possible in communities without roads.

This would result in huge savings on the current cost of cars, roads, office buildings, car parks, garages, gasoline stations, etc. How much time and money could we save by reducing our daily travel between home and work? And how many lives would be saved if we had less car-accidents? Because of the shared walls between them, townhouses save on the cost of heating in winter and cooling in summer.

To start it off, a University campus could be transformed into a community without roads, where people live and come to learn and work. Anyone who would like to nominate one?