Showing posts with label carbon-negative. Show all posts
Showing posts with label carbon-negative. Show all posts

Wednesday, May 20, 2015

Kelp Farming and Ice Dyking

Aaron Franklin
Kelp farming and ice dyking for habitat enhancement 
and carbon-negative fuels and chemical production.

By Aaron Franklin

A purpose-built craft like this Ground effect plane / hovercraft triphibian concept could be ideal.

The laterally-rigid sideskirts with vertically-flexible surface-contouring ski bottoms would allow transitions between air, water, ice, snow, earth surfaces of all types and the waterscoop tail could directly hose the water onto the ice with foil effect to counter lateral reaction thrust. Snow making, firefighting, and ecology seeding also in its functionality.


At pumping of 10tons per second, 50m x 100m/s = 5000sqm, 10000kg/5000sqm = 2 kg per sqm per pass. About 2mm per pass.

If we assume conditions that will allow 2 mm to freeze in 30 seconds. then 4mm per minute = 240mm per hour = 5760mm (near 6m thick) per day could be made of 50m wide by 100m/s x 30s = 3km long of icedyke by a mobile spray vehicle at 100m/s.

3000m x 6m x 50m = 900 000 tons per day of ice making.

A fleet of 50 working for 100 days therefore could make 5000 x 900 000 = 45 000 000 000 tons or near 5 cubic kilometers of ice. 

If we are looking at an average needed to ground them of say 30m thick, then 50m wide is cross section area of 1500 sqm.

5 000 000 000 cubic m / 1500 sqm = 3.33333 million meters or 3333 km.

A ball park figure of 1000kw vehicle power would seem adequate to do this.

Very likely a rope mesh reinforcement would need to be floated on the water and anchored in place to hold together the dyke that has been formed. Doing this work in polynyas seems the best way, then towing into position of sections to be anchored and further thickened.

If 100 such vehicles were used you've got near seven thousand km of icedyke which could be enough for such a layout as this:
Kelp farming, by Aaron Franklin, on background image by Shakhova et al., 2010

For methane plume hotspots to the surface, hexagonal tiles would need to be formed and towed into place, if they are too rich for ice to form inside the rings in situ.

Stationary pumping systems might have to high costs per area in most places with limits to small volumes per pump due to area feasible to distribute the water to and ice layup rates. Though in saying this, high cost is often seen as a benefit for commercial interests. They can make more money doing it the hard way.

The purposes of kelp farming in the less methane emissive areas is as follows:
  • Biomass for biofuels and biochemicals of around 500 ton per hectare per year can be harvested.
  • The growing kelp oxygenates the water to support consumption of methane and river in-flux of organic carbon.
  • The artificial kelp forests provide habitat and food for a diverse and rich ecology with fisheries and abalone/ mussel/ crabs / lobster etc farming potential
  • Unlike micro algae, the kelp biomass is easily harvested, so it would not rot and cause oxygen depletion of the water at the end of summer.
  • Sedimentation rates and water clarity are vastly improved by the kelp forests, thereby improving albedo and enhancing natural carbon burial in sediments.
  • Simple and low cost infrastructure only is neccessary to process the kelp locally into liquids for low transport costs to refineries for further upgrading.
  • It would be easy to use the CO2 from an initial biomass pyrolysis to convert methane collected nearby to methanol for easy low cost transportation.
Combining these systems would allow zero carbon emission liquid fuels via the energy component of the fossil methane and biomass being used as hydrogen and the carbon turned into biochar and high performance bioglues and recyclable polymers, allowing further long-term carbon sequestration by wood, biofibre, etc., and component for construction materials, also replacing high carbon-emission steel, concrete etc.

Thursday, September 29, 2011

The Biochar Economy

The Biochar Economy offers a sustainable alternative to economic systems that fail to sufficiently take into account care for the environment and concerns for global warming.

Biochar is one of the products of pyrolysis, an oxygen-starved method of heating up biomass to (also) produce renewable energy.

The Australian Government plans to award carbon credits for the application of biochar to soil, for biochar's ability to abate greenhouse gases. As part of the Carbon Farming Initiative $AU2 million will be provided for a Biochar Capacity Building Program. This in addition to $AU1.4 million that is already being invested in the National Biochar Initiative as part of the Climate Change Research Program.

Carbon credits constitute just one way to support biochar. Ultimately, carbon credits are typically paid from profits on fossil fuel, which are scheduled to decrease over time. To develop more lasting support for biochar, alternatively policies should be considered.
The Biochar Economy


The idea behind the "Biochar Economy" is to try to embed biochar production into as many processes as possible, as pictured on above image, from open source ecology.

In carbon-negative 'Biochar Economies', biochar is proposed to also act as a kind of local 'gold standard' for local currency supply. Biochar-based currency could strengthen local economies and shield them not only from the volatility of global currency fluctuations, but also from the danger of global warming causing the entire global financial system to collapse, as discussed back in 2007.

Biochar-based local currencies go well together with three types of local feebates: 
  • Energy fees, imposed on polluting fuel and the equipment and appliances used to burn the fuel, to fund rebates on local clean energy programs.
  • Fees on polluting cement, livestock products and nitrogen fertilizers, made payable in local currency, funding rebates on locally-produced biochar and olivine added to local soils.
  • Local rates that incorporate feebates, i.e. higher fees the lower the soil's carbon content, with rebates for soils with the highest carbon content.
Since pyrolysis of surplus biomass can produce renewable energy, it can benefit from local energy feebates as pictured below. 


In addition, soil supplements that include biochar can benefit from feebates as pictured below. 

These policies will avoid emissions and effectively take greenhouse gases from the atmosphere. 

These policies will also create local employment and investment opportunities without having to borrow money elsewhere, and will increase local standards of living and health, as well as increase the quality and value of the land. 

All this can be achieved though mechanisms that work in parallel and are often complementary, e.g. pyrolysis of forest waste can stimulate forest growth, avoid termite infections and reduce the risk of wildfires; furthermore, when pyrolysis provides power that replaces the practice of burning firewood and fossil fuel to power lighting and cooking, this will also reduce the risk of lung infections.

To increase demand for the local currency, rebates on local clean energy programs and soil supplements could be paid out in local currency. Furthermore, a community can call for local rates and fees on products such as fuel, polluting cement, livestock products and nitrogen fertilizers to be paid in local currency.

Much crop is now used to grow feed for livestock ― less livestock could free up land that could be used to produce food & wood, and the associated organic waste. Furthermore, such feebates can avoid soil erosion and deforestation, and instead result in more vegetation, thus further increasing the amount of biomass available for pyrolysis.

Below are some further ways pyrolysis can be integrated in the local economy:

  • Pyrolysis of biomass is an excellent way of handling organic waste, while producing useful products such as biochar, biooils and gases such as hydrogen. Biooil and hydrogen can be used to power aviation and shipping.  
  • Bioasphalt® is a type of asphalt made from bio-oil. According to its manufacturer, it can save energy and money, since it can be mixed and paved at lower temperatures than conventional asphalt. 
  • Apart from burial of biochar to enhance soil fertility, biochar can also be used to manufacture a range of products, including vehicle bodies made of carbon fiber and capacitors. 

    A team at Stevens Institute of Technology has designed, fabricated, and tested a prototype supercapacitor electrode made from biochar. The team demonstrated biochar's feasibility as an alternative to activated carbon for supercapacitor electrodes. Currently, supercapacitors use activated carbon. The team estimates that biochar costs almost half as much as activated carbon, apart from being more sustainable. 

    Supercapacitors can be used to power electric buses. Ultracapacitor buses by Sinautecus have been operational in the Greater Shanghai area since August 2006, as mentioned under this post on electric bus systems.

Thursday, September 22, 2011

Carbon-negative technologies


The image below, adapted from Negative Emissions Technologies report by Duncan McLaren (version 2, 2011), pictures a number of carbon dioxide removal (CDR) methods. 





For further discussion of biomass use, see the post Biomass; for further discussion of policy issues, see The way back to 280 ppm and Towards a Sustainable Economy