Monday, October 15, 2007


Bio-char pellets, EpridaMost households only use one or at most two different rubbish bins, one for recyclables (paper & packaging) and one for general waste. It makes a lot of sense to add a third type of rubbish bin, for biowaste, i.e. kitchen waste, soil and garden waste.

Many people already compost such biowaste in the garden, but all too often such biowaste disappears along with the general waste in the rubbish bin. As displayed on the picture below, analysis in Waikato, New Zealand, shows that about half of household waste can consist of kitchen waste, soil and garden waste. Such waste ends up on rubbish tips, where the decomposing process leads to greenhouse gases, such as methane. And all too often, farmers burn crop residues on the land, resulting in huge emissions of greenhouse gases.

What we throw away, Waikato, New ZealandAll such biowaste could deliver affordable energy by using the slow burning process of pyrolysis to produce agrichar or bio-char, a form of charcoal that is totally black. Organic material, when burnt with air, will normally turn into white ash, while the carbon contained in the biowaste goes up into the air as carbon dioxide (CO2). In case of pyrolysis, by contrast, biowaste is heated up while starved of oxygen, resulting in this black form of charcoal.

This agrichar was at first glance regarded as a useless byproduct when producing hydrogen from biowaste, but it is increasingly recognized for its qualities as a soil supplement. Agrichar makes the soil better retain water and nutrients for plants, thus reducing losses of nutrients and reducing the CO2 that goes out of the soil, while enhancing soil productivity and making it store more carbon.

When biowaste is normally added to soil, the carbon contained in crop residue, mulch and compost is likely to stay there for only two or three years. By contrast, the more stable carbon in agrichar can stay in the soil for hundreds of years. Adding agrichar just once could be equivalent to composting the same weight every year for decades.

Agrichar appears to be the best way to bury carbon in topsoil, resulting in soil restoration and improved agriculture. Agrichar has the potential to remove substantial amounts of CO2 from the atmosphere, as it both buries carbon in the soil and gets more CO2 out of the atmosphere through better growth of vegetation. Agrichar restores soils and increases fertility. It results in plants taking more CO2 out of the atmosphere, which ends up in the soil and in the vegetation. Agrichar feeds new life in the soil and increases respiration, leading to improvements in soil structure, specifically its capacity to retain water and nutrients. Agrichar makes the soil structure more porous, with lots of surface area for water and nutrients to hold onto, so that both water and nutrients are better retained in the soil.

In conclusion, recycling biowaste in the above way is an excellent method to produce hydrogen (e.g. for cars) and to bury carbon in the soil and improve production of food. Agrichar is now produced for soil enrichment at a growing number of places. The top photo shows agrichar in pellet form from Eprida. Australian-based BEST Energies has built a demonstration pyrolysis plant with a capacity to process 300 kilograms of biowaste per hour. It accepts biowaste such as dry green waste, wood waste, rice hulls, cow and poultry manure or paper mill waste. The plant cooks the biomass without oxygen, producing syngas, a flammable mixture of carbon monoxide and hydrogen. The agrichar thus produced retains about half the carbon of the original biowaste (the other half was burned in the process of producing the syngas).

Also important is to compare different farming practices. Carbon is important for holding the soil together. Farmers now typically plough the soil to plant the seeds and add fertilizers. This ploughing causes oxygen to mix with the carbon in the soil, resulting in oxidation, which releases CO2 into the atmosphere. Ploughing leads to a looser soil structure, prone to erosion under the destructive impact of heavy rains, flooding, thunderstorms, wind and animal traffic. Given the more extreme weather that can be expected due to global warming, we should reconsider practices such as ploughing.

Furthermore, the huge monocultures of modern farming have become dependent on fertilizers and pesticides. The separation of farming and urban areas has in part become necessary due to the practice of spraying chemicals and pesticides. Instead, we should consider growing more food on smaller-scale farms, in gardens and greenhouses within areas currently designated for urban usage. Vegan-organic farming can increase bio-diversity; by carefully selecting complementary vegetation to grow close together, diseases and pests can be minimized while the nutritional value, taste and other qualities of the food can be increased.

An issue of growing concern is nitrous oxide (N2O), which is 310 times more potent than CO2 as a greenhouse gas when released in the atmosphere. Much release of N2O is related to the practices of ploughing and adding fertilizers to the soil. Microbes subsequently convert the nitrogen in these fertilisers into N2O. A recent study led by Nobel prize-winning chemist Paul Crutzen indicates that the current ways of growing and burning biofuel actually raise rather than lower greenhouse gas emissions. The study concludes that growing some of the most commonly used biofuel crops (rapeseed biodiesel and corn bioethanol) releases twice the amount of N2O, compared to what the International Panel on Climate Change (IPCC) estimates for farming. The findings follow a recent OECD report that concluded that growing biofuel crops threatens to cause food shortages and damage biodiversity, with only limted benefits in terms of global warming.

All this is no trivial matter. Soils contain more carbon than all vegetation and the atmosphere combined. Therefore, soil is the obvious place to look at when trying to solve problems associated with global warming. By changing agricultural practices, we can add carbon to the soil and can minimize release of greenhouse gases.

- Soils offer new hope as carbon sink

- Surprise: less oxygen could be just the trick

- What we throw away

- The Carbon Farmers

- Living Soil

- BEST Pyrolysis, Inc.

- Eprida, Inc.

- Biofuels could boost global warming, finds study

- Biofuels: is the cure worse than the disease?

Companies producing agrichar:
- terra preta at


erich said...

This technology represents the most comprehensive, low cost, and productive approach to long term stewardship and sustainability.

I thought the current news and links on Terra Preta (TP)soils and closed-loop pyrolysis would interest you.
SCIAM Article May 15 07;

After many years of reviewing solutions to anthropogenic global warming (AGW) I believe this technology can manage Carbon for the greatest collective benefit at the lowest economic price, on vast scales. It just needs to be seen by ethical globally minded companies.

Could you please consider looking for a champion for this orphaned Terra Preta Carbon Soil Technology.

The main hurtle now is to change the current perspective held by the IPCC that the soil carbon cycle is a wash, to one in which soil can be used as a massive and ubiquitous Carbon sink via Charcoal. Below are the first concrete steps in that direction;

S.1884 – The Salazar Harvesting Energy Act of 2007

A Summary of Biochar Provisions in S.1884:

Carbon-Negative Biomass Energy and Soil Quality Initiative

for the 2007 Farm Bill

Tackling Climate Change in the U.S.

Potential Carbon Emissions Reductions from Biomass by 2030by Ralph P. Overend, Ph.D. and Anelia Milbrandt
National Renewable Energy Laboratory

The organization 25x25 (see 25x'25 - Home) released it's (first-ever, 55-page )"Action Plan" ; see;
On page 29 , as one of four foci for recommended RD&D, the plan lists: "The development of biochar, animal agriculture residues and other non-fossil fuel based fertilizers, toward the end of integrating energy production with enhanced soil quality and carbon sequestration."
and on p 32, recommended as part of an expanded database aspect of infrastructure: "Information on the application of carbon as fertilizer and existing carbon credit trading systems."

I feel 25x25 is now the premier US advocacy organization for all forms of renewable energy, but way out in front on biomass topics.

There are 24 billion tons of carbon controlled by man in his agriculture and waste stream, all that farm & cellulose waste which is now dumped to rot or digested or combusted and ultimately returned to the atmosphere as GHG should be returned to the Soil.

Even with all the big corporations coming to the GHG negotiation table, like Exxon, Alcoa, .etc, we still need to keep watch as the Democrats/Enviromentalist try to influence how carbon management is legislated in the USA. Carbon must have a fair price, that fair price and the changes in the view of how the soil carbon cycle now can be used as a massive sink verses it now being viewed as a wash, will be of particular value to farmers and a global cool breath of fresh air for us all.

If you have any other questions please feel free to call me or visit the TP web site I've been drafted to co-administer.

It has been immensely gratifying to see all the major players join the mail list , Cornell folks, T. Beer of Kings Ford Charcoal (Clorox), Novozyne the M-Roots guys(fungus), chemical engineers, Dr. Danny Day of EPRIDA , Dr. Antal of U. of H., Virginia Tech folks and probably many others who's back round I don't know have joined.

Also Here is the Latest BIG Terra Preta Soil news;

The Honolulu Advertiser: “The nation's leading manufacturer of charcoal has licensed a University of Hawai'i process for turning green waste into barbecue briquets.”

About a year ago I got Clorox interested in TP soils and Dr. Antal's Plasma Carbonazation process.


ConocoPhillips Establishes $22.5 Million Pyrolysis Program at Iowa State 04/10/07

Here is my current Terra Preta posting which condenses the most important stories and links;

Terra Preta Soils Technology To Master the Carbon Cycle

Man has been controlling the carbon cycle , and there for the weather, since the invention of agriculture, all be it was as unintentional, as our current airliner contrails are in affecting global dimming. This unintentional warm stability in climate has over 10,000 years, allowed us to develop to the point that now we know what we did,............ and that now......... we are over doing it.

The prehistoric and historic records gives a logical thrust for soil carbon sequestration.
I wonder what the soil biome carbon concentration was REALLY like before the cutting and burning of the world's forest, my guess is that now we see a severely diminished community, and that only very recent Ag practices like no-till and reforestation have started to help rebuild it. It makes implementing Terra Preta soil technology like an act of penitence, a returning of the misplaced carbon to where it belongs.

On the Scale of CO2 remediation:

It is my understanding that atmospheric CO2 stands at 379 PPM, to stabilize the climate we need to reduce it to 350 PPM by the removal of 230 Billion tons of carbon.

The best estimates I've found are that the total loss of forest and soil carbon (combined
pre-industrial and industrial) has been about 200-240 billion tons. Of
that, the soils are estimated to account for about 1/3, and the vegetation
the other 2/3.

Since man controls 24 billion tons in his agriculture then it seems we have plenty to work with in sequestering our fossil fuel CO2 emissions as stable charcoal in the soil.

As Dr. Lehmann at Cornell points out, "Closed-Loop Pyrolysis systems such as Dr. Danny Day's are the only way to make a fuel that is actually carbon negative". and that " a strategy combining biochar with biofuels could ultimately offset 9.5 billion tons of carbon per year-an amount equal to the total current fossil fuel emissions! "

Terra Preta Soils Carbon Negative Bio fuels, massive Carbon sequestration, 1/3 Lower CH4 & N2O soil emissions, and 3X FertilityToo

This some what orphaned new soil technology speaks to so many different interests and disciplines that it has not been embraced fully by any. I'm sure you will see both the potential of this system and the convergence needed for it's implementation.

The integrated energy strategy offered by Charcoal based Terra Preta Soil technology may
provide the only path to sustain our agricultural and fossil fueled power
structure without climate degradation, other than nuclear power.

The economics look good, and truly great if we had CO2 cap & trade or a Carbon tax in place.

.Nature article, Aug 06: Putting the carbon back Black is the new green:

Here's the Cornell page for an over view:

University of Beyreuth TP Program, Germany

This Earth Science Forum thread on these soils contains further links, and has been viewed by 19,000 self-selected folks. ( I post everything I find on Amazon Dark Soils, ADS here):

There is an ecology going on in these soils that is not completely understood, and if replicated and applied at scale would have multiple benefits for farmers and environmentalist.

Terra Preta creates a terrestrial carbon reef at a microscopic level. These nanoscale structures provide safe haven to the microbes and fungus that facilitate fertile soil creation, while sequestering carbon for many hundred if not thousands of years. The combination of these two forms of sequestration would also increase the growth rate and natural sequestration effort of growing plants.

The reason TP has elicited such interest on the Agricultural/horticultural side of it's benefits is this one static:

One gram of charcoal cooked to 650 C Has a surface area of 400 m2 (for soil microbes & fungus to live on), now for conversion fun:

One ton of charcoal has a surface area of 400,000 Acres!! which is equal to 625 square miles!! Rockingham Co. VA. , where I live, is only 851 Sq. miles

Now at a middle of the road application rate of 2 lbs/sq ft (which equals 1000 sqft/ton) or 43 tons/acre yields 26,000 Sq miles of surface area per Acre. VA is 39,594 Sq miles.

What this suggest to me is a potential of sequestering virgin forest amounts of carbon just in the soil alone, without counting the forest on top.

To take just one fairly representative example, in the classic Rothampstead experiments in England where arable land was allowed to revert to deciduous temperate woodland, soil organic carbon increased 300-400% from around 20 t/ha to 60-80 t/ha (or about 20-40 tons per acre) in less than a century (Jenkinson & Rayner 1977). The rapidity with which organic carbon can build up in soils is also indicated by examples of buried steppe soils formed during short-lived interstadial phases in Russia and Ukraine. Even though such warm, relatively moist phases usually lasted only a few hundred years, and started out from the skeletal loess desert/semi-desert soils of glacial conditions (with which they are inter-leaved), these buried steppe soils have all the rich organic content of a present-day chernozem soil that has had many thousands of years to build up its carbon (E. Zelikson, Russian Academy of Sciences, pers. comm., May 1994).

All the Bio-Char Companies and equipment manufactures I've found:

Carbon Diversion

Eprida: Sustainable Solutions for Global Concerns

BEST Pyrolysis, Inc. | Slow Pyrolysis - Biomass - Clean Energy - Renewable Ene

Dynamotive Energy Systems | The Evolution of Energy

Ensyn - Environmentally Friendly Energy and Chemicals

Agri-Therm, developing bio oils from agricultural waste

Advanced BioRefinery Inc.

Technology Review: Turning Slash into Cash

The International Agrichar Initiative (IAI) conference held at Terrigal, NSW, Australia in 2007. ( ) ( The papers from this conference are now being posted at their home page)

If pre-Columbian Kayopo Indians could produce these soils up to 6 feet deep over 15% of the Amazon basin using "Slash & CHAR" verses "Slash & Burn", it seems that our energy and agricultural industries could also product them at scale.

Harnessing the work of this vast number of microbes and fungi changes the whole equation of energy return over energy input (EROEI) for food and Bio fuels. I see this as the only sustainable agricultural strategy if we no longer have cheap fossil fuels for fertilizer.

We need this super community of wee beasties to work in concert with us by populating them into their proper Soil horizon Carbon Condos.

Erich J. Knight
Shenandoah Gardens
1047 Dave Berry Rd.
McGaheysville, VA. 22840
(540) 289-9750

Sam Carana said...

Thanks so much for your post, Erich, you can count on me to spread the word.

new_biochar_land said...

The world is a great place, but it is falling apart and we all are responsable for this. Be responsable now and try to make it better.
Biochar, one of the newest option can contribuate to atmospheric CO2 reduction. Find out more:
The Biochar Revolution is exactly what it says !