Showing posts with label methane. Show all posts
Showing posts with label methane. Show all posts

Monday, April 18, 2011

How would you allocate US$10 million per year to most reduce climate risk?

Imagine that you had a budget of $10 million per year and that you should maximize the amount of climate risk reduction obtainable with that $10 million, what would you allocate it to and why?

Given the scary situation in the Arctic, I would apportion parts of the $10 million to methods that promise immediate results:
  1. R&D and testing of SRM methods such as surface brightening and marine cloud brightening.
  2. R&D and testing of ways to ignite or break down methane from the sky, i.e. from airplanes or satellites. Laser beams spring to mind. Another technology that could be looked at further is to focus short, amplified pulses of light on water vapor, hydrogen peroxide or ozone, in efforts to produce more hydroxyl (OH) which could in turn oxidize as much methane as possible.
  3. Building on the outcome of 2., equipping small aircraft with such technology, as well as autopilot software, GPS, LiPo batteries and with solar thin film mounted both on top of and underneath the wings.
example aircraft
At first, as a test, two such small aircraft could navigate on auto-pilot to the north of Canada and Alaska at the start of Spring on the Northern Hemisphere.

In subsequent years, numerous such planes could follow, also going to other parts of the Arctic. At the end of Summer, the planes could return home for a check-up and possible upgrade of the technology, to be launched again the next year.

There are many self-financed clubs where members build and fly remote controlled aircraft, as discussed in comments underneath this post.

Even a small financial incentive could help such clubs make a lot progress and give them a goal, while the publicity would also make people more aware of the problems we face in the Arctic.

Such aircraft could navigate the Arctic, guided by satellite detection of methane concentrations (image left) and by equipment carried onboard, such as small versions of methane analyzers.

Measuring from different vantage points can pinpoint the most suitable location to cross-aim multiple laser beams at, to minimize the energy needed to heat up methane to its point of auto-ignition (image below).



Methane can be ignited where it is present in concentrations of between 5% and 15%. In concentrations of around 9%, methane could be ignited with as little as 0.3 mj of energy (see image, adapted from Zabetakis).

At well over 500 degrees Celsius, methane's minimum auto-ignition temperature is rather high. Other volatile hydrocarbons in the vicinity may ignite at lower temperatures (with less energy), in turn igniting the methane.



Sam Carana

For further background on the above, also see:
http://geo-engineering.blogspot.com/2011/04/runaway-global-warming.html
and
http://groups.google.com/group/geoengineering/browse_thread/thread/5eaf812314dced8c



Sunday, January 16, 2011

2011 starts with lowest Arctic sea ice extent on record

The year 2010 was the warmest year on record, as confirmed by the WMO and as illustrated by the NOAA graph below.
This is the more dramatic given that we’re in the middle of a strong La NiƱa, which pushes temperatures down, while we’ve been in “the deepest solar minimum in nearly a century.” NOAA has meanwhile published the data for 2010. A chart based on NOAA data is added below, with standard polynomial trendline added.
As the NASA map below shows, temperature anomalies are especially prominent at higher latitudes, close to the Arctic. Arctic sea ice cover in December 2010 was the lowest on record for the month, said the WMO, adding that sea ice around the northern polar region shrank to an average monthly extent of 12 million square kilometres, 1.35 million square kilometres below the 1979 to 2000 December average. Furthermore, 2011 has started with the lowest Arctic sea ice extent on record for this time of the year, as shown on the International Arctic Research Center graph below.
On the NSIDC graph below, monthly September ice extent for 1979 to 2010 shows a decline of 11.5% per decade.
The NSIDC image below shows that, at the end of the summer 2010, under 15% of the ice remaining in the Arctic was more than two years old, compared to 50 to 60% during the 1980s. There is virtually none of the oldest (at least five years old) ice remaining in the Arctic (less than 60,000 square kilometers [23,000 square miles] compared to 2 million square kilometers [722,000 square miles] during the 1980s).
Why is all this so important? The Arctic sea ice acts as a giant mirror, reflecting sunlight back into space and thus keeping Earth relatively cool, as discussed in this open letter. If this sunlight instead gets absorbed at higher latitudes, then feedback effects will take place that result in much higher temperatures, in a process sometimes referred to as Arctic amplification of global warming.
Above image is from a recent study, which found that 2010 set a record for surface melting over the Greenland ice sheet. The study warns that surface melt and albedo are intimately linked: as melting increases, so does snow grain size, leading to a decrease in surface albedo which then fosters further melt. A recent study concludes that the rate of Arctic sea ice decline appears to be accelerating due to positive feedbacks between the ice, the Arctic Ocean and the atmosphere. As Arctic temperatures rise, summer ice cover declines, more solar heat is absorbed by the ocean and additional ice melts. Warmer water may delay freezing in the fall, leading to thinner ice cover in winter and spring, making the sea ice more vulnerable to melting during the next summer.
Thin lines are raw data, bold lines are three-point running means…. (C) Summer temperatures at 50-m water depth (red)…. Gray bars mark averages until 1835 CE and 1890 to 2007 CE. Blue line is the normalized Atlantic Water core temperature (AWCT) record … from the Arctic Ocean (1895 to 2002; 6-year averages)…. (D) Summer temperatures (purple) [calculated with a different method]
The IPCC didn't take such feedbacks into account and didn't foresee a total September sea ice loss in the Arctic for this century. Many scientists have repeatedly warned about this, as mentioned in this early 2009 post and this early 2010 post.
Projections that start with more recent data will take some of this feedback into account. Projections that start with 1992 and 1995 data, as in the pink and purple lines on above image, predict a total loss of September Arctic sea ice by 2040 or 2030. A study that used 2007/2008 data as starting point predicts a nearly sea ice free Arctic in September by the year 2037. Albedo change is only one of a number of feedback processes. A rapid rise of Arctic temperatures could lead to wildfires and the release of huge amounts of carbon dioxide and methane that are now stored in peat, permafrost and clathrates, which constitutes further feedback that could cause a runaway greenhouse effect. Heat produced by decomposition of organic matter is yet another feedback that leads to even deeper melting.
The cumulative impact of multiple feedback processes and their interaction reinforces and accelerates Arctic warming, making downward curved projections more applicable than straight line extrapolation of earlier data. The pink dotted line on above chart shows a scenario that reflects the impact of a number of feedback processes. A study at the University of Calgary concludes that, even if we completely stopped using fossil fuels and put no more CO2 in the atmosphere, we've already added enough carbon in the oceans to cause the West Antarctic ice sheet to eventually collapse (by the year 3000), resulting in a global sea level rise of at least four meters. In other words, we have already passed the tipping point for the West Antarctic ice sheet, and additional emissions could cause its collapse to occur much earlier. According to a study published in the journal Nature Geoscience, ice and snow in the Northern Hemisphere are now reflecting on average 3.3 watts of solar energy per square meter back to space, a reduction of 0.45 watts per square meter between 1979 and 2008. "The rate of energy being absorbed by the Earth through cryosphere decline – instead of being reflected back to the atmosphere – is almost 30% of the rate of extra energy absorption due to CO2 increase between pre-industrial values and today," co-author Karen Shell said. A study by by National Center for Atmospheric Research (NCAR) scientist Jeffrey Kiehl found that carbon dioxide may have at least twice the effect on global temperatures than currently projected by computer models of global climate. Melting of ice sheets, for example, leads to additional heating because exposed dark surfaces of land or water absorb more heat than ice sheets. Without changes, this new study warns, Earth's average temperature appears set to rise this century by 29°F (16°C), to levels never before experienced in human history. Such a rise would make that many areas on Earth would become too hot to live in. Humans and other mammals cannot survive prolonged exposure to temperatures exceeding 95°F (35°C), says Steven Sherwood. Heat stress would make many parts of the globe uninhabitable with global-mean warming of about 7°C (12.6°F). Warming of about 21°F (11-12°C) would make places where most people now live uninhabitable. I have made recommendations to deal with global warming for years, most recently in this Global Warming Action Plan. What do you think should be done?

Monday, March 9, 2009

Open letter to Dr Pachauri

Climate Congress, Copenhagen, 10-12 March, 2009 

Open letter to Dr Rajendra K. Pachauri, IPCC chair


Dear Dr Pachauri,

The Climate Congress presents an important opportunity to present all facets of the current situation, explore the ramifications, and suggest appropriate actions. The aim must be, as far as possible, to address the threat of a disastrous multi-metre rise in sea level and catastrophic multi-degree rise in temperature – whenever they might occur.

We would like to suggest a rather simple division of the problem/solution domain:


Part A: Emissions reduction

About: Reducing emissions of greenhouse gases into the atmosphere.

Target: Achieve near-zero carbon economies throughout the world by end century.

Difficulties: International agreement, life-style changes, high cost.

Rationale: Long-term sustainability.


Part B : Carbon stock management

About: Removing CO2 from the atmosphere by various means.

Target: Reduce levels below 350 ppm over next three decades.

Difficulties: May involve change in agricultural practice, worldwide. Side-effects may be difficult to anticipate.

Rationale: Reduce CO2 climate forcing below its current level, halt ocean acidification and protect carbon sinks.


Part C : Heat transfer and radiation management

About: Mainly about albedo engineering and solar radiation management.

Priority target: Cool the Arctic sufficient to halt retreat of Arctic sea ice within three years.

Difficulties: Seen as tampering with the environment, and therefore intrinsically dangerous; but cost is low and side-effects should be manageable.

Rationale: Reduce risk of massive methane discharge and stabilise the Greenland ice sheet.

International focus has been almost entirely on Part A until recently, when it has been realised that: 
(1) it is proving extremely difficult to achieve reductions; 
(2) the current trend is towards IPCC’s worst case scenario; 
(3) lifetime of CO2 had been under-estimated – even if anthropogenic greenhouse gases could be stopped overnight, the existing gas levels will live on in the atmosphere for centuries, causing the global temperature to continue to rise many degrees; 
(4) global warming of more than 2 degrees could be disastrous; 
(5) tipping points could be reached much sooner than expected. It is generally recognised that the underlying primary cause of global warming is the excess of CO2 in the atmosphere. If emissions reduction can’t reduce it quickly enough, then we have to resort to some form of geoengineering – or more specifically carbon stock management – see Part B. 

Furthermore, ocean acidification is becoming dangerous, and this can only be tackled by removing CO2 from the atmosphere. So, within a decade or two, carbon stock management could become essential, and we should be doing large-scale experimentation now. 

But the actions of Part A and Part B cannot prevent tipping points driven by positive feedback on temperature. Emissions reduction and carbon stock management cannot produce a cooling effect – certainly not on the time-scales we are talking about. We have to resort to other kinds of geoengineering, hence Part C. 

As regards tipping points, our perception of the situation has changed fundamentally since the dramatic retreat of Arctic sea ice in September 2007. The IPCC had chosen to ignore potential tipping points, as being too difficult to model or lacking reliable data. 

But now some experts are talking about possible summer disappearance of sea ice within a decade [1], and this possibility is even mentioned in the introduction to Session 1 of the Congress [2]: “Sea ice is changing and the sea ice in the northern polar ocean has retreated in the last few years and might totally disintegrate during the next decade.” Sea ice disappearance will accelerate Arctic warming which could trigger the release of vast amounts of methane from permafrost (leading to many degrees of global warming) and/or destabilise the Greenland ice sheet (leading to many metres of sea level rise). 

There now appears no other possibility to save the Arctic sea ice than to cool the Arctic region, by reflecting more sunlight back into space. There are two prime candidates for this: stratospheric sulphate aerosols and marine cloud brightening [3]. The former involves the injection of a H2S or SO2 high in the stratosphere, where it reacts to form microscopic droplets of sulphuric acid which scatter sunlight efficiently. This mimics the effect of a volcano like Pinatubo, which cooled the planet for two years from its sulphur emissions into the stratosphere. The latter – the brightening of marine clouds – involves producing a very fine spray of sea water from ships which sail underneath low-lying cumulus clouds, such that some of the spray wafts upwards, brightening the clouds and reflecting light back into space. 

Modeling suggests that each of these cooling technologies should be effective, affordable, fast acting, easily reversible and reasonably safe. If we can save the Arctic sea ice, then we may be able to avoid other tipping points such as the methane release from permafrost. Such action buys time while we reduce CO2 levels and avoid other catastrophes such as from ocean acidification. On the other hand, if we do not act with the necessary urgency, we may soon find ourselves beyond the point of no return: doomed both to many metres of sea level rise and to spiraling temperatures, way above 6 degrees this century – temperatures for which the very survival of our civilization would be in question. 

- John Nissen Email: jn@cloudworld.co.uk for correspondence 
- Stephen Salter Professor of Engineering, University of Edinburgh John Latham http://www.mmm.ucar.edu/people/latham/ 
- Oliver Wingenter Professor of Atmospheric Chemistry and Climate Change, New Mexico Institute of Mining and Technology 
- Peter Read Hon. Research Fellow, Massey University Centre for Energy Research 
- Andrew Lockley, London UK Former director of Friends of the Earth ENWI 
- John Gorman MA (Cantab), London, UK 
- Sam Carana, contributor to feebate.net sam.carana@gmail.com

References:

[1] Climate Safety report, which can be downloaded from: 
http://climatesafety.org/

[2] Climate Congress, Session 1, in: 

Monday, October 15, 2007

Tax the sale of meat!

There are many ethical objections one can have against slaughtering animals and eating them. Vegetarian lifestyles have been around for ages, just like animal rights activists have long and very publicly protested against animals being used in tests of new cosmetics in laboratoria.

Consumption of red meat from cattle, sheep, goats and other ruminants has long been linked to heart disease, colorectal cancer and further diseases.
http://www.ajcn.org/cgi/content/full/70/3/525S
http://aje.oxfordjournals.org/cgi/reprint/148/8/761.pdf

The link between meat and obesity has only recently received much media attention, with a focus on the fat and sugar content of fast food.

Similarly, environmentalists have long protested against the loss of biodiversity, as rainforests are cleared to make room for cattle or for soy plantations to feed cattle, all to satisfy global demand for meat.

Now meat has also been linked to global warming in various ways. As the impact of global warming starts to bite, many crops are at risk, due to more extreme weather conditions such as floods, drouhts, storms, heavy rain and moisture. It takes a lot of fertile land to put meat on the table, land that could otherwise be used to grow crops top feed the poor and hungry. At the same time, energy suppliers are increasingly looking at using bio-mass as a replacement for fossil fuel, so food is increasingly competing with energy in agriculture.

Finally, animals like cows and pigs release huge amounts of methane gas, which is twenty times more potent than greenhouse gas as carbon dioxide. A recent study led by Anthony McMichael, professor at the National Centre for Epidemiology and Population Health at the Australian National University, Canberra, provides some figures. It points out that 22 per cent of the world's total greenhouse gases emissions come from agriculture, as much as industry and more than what transport emits. Production and transport of livestock and their feed accounts for nearly 80 per cent of these agricultural emissions, through release of gases such as nitro-oxide and carbon dioxide, but mainly in the form of methane. A cow can belch up to 300 pounds of methane per day. The study was published by the Lancet, at:
http://www.thelancet.com/journals/lancet/article/PIIS0140673600025642/abstract

Before you try and find more details, note that the Lancet has an elaborate registration process demanding that you name your medical speciality and probably at some point your blood type, so if you prefer to bypass such things, you can try BugMeNot, at:
http://www.bugmenot.com/view/www.thelancet.com

In conclusion, a tax on the sale of meat therefore makes most sense. We could leave it up to politics to work out how high such a tax should be, but a flat 10% tax on all sales of meat looks like a good start. The tax could be higher the more methane was released, which would go hand in hand with compulsory disclosure on products of the amount of greenhouse gases that was needed to produce and ship them. Once we've got a good system in place that displays how many greenhouse gases were released in production, we could tax accordingly. There could be different tax rates, even a gliding scale proportional to the emissions. This would encourage research into different diets for cows or somehow replacing the methane-producing bacteria inside a cow's gut.

If the proceeds of such a tax merely used to help the poor pay rising prices for food, then little will be achieved for the environment. Instead, the proceeds of such a tax should be used to create communities without roads, where people can have vegetable gardens close to their homes. We should start building such communities without roads on university campuses, designing small houses for staff and students to live around shops and restaurants. Small houses need less heating and air-conditioning. If we leave out roads, garages and other car-parking spaces, they can be built closely together, so anyone can easily walk or bike their way around. That would be more healthy as well!

Anyway, it makes a lot of sense to turn vegetarian, or even better vegan. Even if you didn't have ethical problems with eating meat and if you lacked compassion for the poor and hungry, you still would help the environment by becoming a vegetarian and thus yourself!