Monday, October 15, 2007

Tax the sale of meat!

There are many ethical objections one can have against slaughtering animals and eating them. Vegetarian lifestyles have been around for ages, just like animal rights activists have long and very publicly protested against animals being used in tests of new cosmetics in laboratoria.

Consumption of red meat from cattle, sheep, goats and other ruminants has long been linked to heart disease, colorectal cancer and further diseases.
http://www.ajcn.org/cgi/content/full/70/3/525S
http://aje.oxfordjournals.org/cgi/reprint/148/8/761.pdf

The link between meat and obesity has only recently received much media attention, with a focus on the fat and sugar content of fast food.

Similarly, environmentalists have long protested against the loss of biodiversity, as rainforests are cleared to make room for cattle or for soy plantations to feed cattle, all to satisfy global demand for meat.

Now meat has also been linked to global warming in various ways. As the impact of global warming starts to bite, many crops are at risk, due to more extreme weather conditions such as floods, drouhts, storms, heavy rain and moisture. It takes a lot of fertile land to put meat on the table, land that could otherwise be used to grow crops top feed the poor and hungry. At the same time, energy suppliers are increasingly looking at using bio-mass as a replacement for fossil fuel, so food is increasingly competing with energy in agriculture.

Finally, animals like cows and pigs release huge amounts of methane gas, which is twenty times more potent than greenhouse gas as carbon dioxide. A recent study led by Anthony McMichael, professor at the National Centre for Epidemiology and Population Health at the Australian National University, Canberra, provides some figures. It points out that 22 per cent of the world's total greenhouse gases emissions come from agriculture, as much as industry and more than what transport emits. Production and transport of livestock and their feed accounts for nearly 80 per cent of these agricultural emissions, through release of gases such as nitro-oxide and carbon dioxide, but mainly in the form of methane. A cow can belch up to 300 pounds of methane per day. The study was published by the Lancet, at:
http://www.thelancet.com/journals/lancet/article/PIIS0140673600025642/abstract

Before you try and find more details, note that the Lancet has an elaborate registration process demanding that you name your medical speciality and probably at some point your blood type, so if you prefer to bypass such things, you can try BugMeNot, at:
http://www.bugmenot.com/view/www.thelancet.com

In conclusion, a tax on the sale of meat therefore makes most sense. We could leave it up to politics to work out how high such a tax should be, but a flat 10% tax on all sales of meat looks like a good start. The tax could be higher the more methane was released, which would go hand in hand with compulsory disclosure on products of the amount of greenhouse gases that was needed to produce and ship them. Once we've got a good system in place that displays how many greenhouse gases were released in production, we could tax accordingly. There could be different tax rates, even a gliding scale proportional to the emissions. This would encourage research into different diets for cows or somehow replacing the methane-producing bacteria inside a cow's gut.

If the proceeds of such a tax merely used to help the poor pay rising prices for food, then little will be achieved for the environment. Instead, the proceeds of such a tax should be used to create communities without roads, where people can have vegetable gardens close to their homes. We should start building such communities without roads on university campuses, designing small houses for staff and students to live around shops and restaurants. Small houses need less heating and air-conditioning. If we leave out roads, garages and other car-parking spaces, they can be built closely together, so anyone can easily walk or bike their way around. That would be more healthy as well!

Anyway, it makes a lot of sense to turn vegetarian, or even better vegan. Even if you didn't have ethical problems with eating meat and if you lacked compassion for the poor and hungry, you still would help the environment by becoming a vegetarian and thus yourself!

The Hydrogen Economy

Hydrogen fuel cells constitute an efficient way to store energy and as such they form an important component in our struggle to contain global warming. Hydrogen fuel cells are a convenient and clean way to power cars and supply electricity on demand virtually everywhere. 

The importance of hydrogen as a technology is huge, as it constitutes the clean and renewable storage compliment to clean and renewable ways to capture energy, such as solar, wind, geothermal, wave and hydro-power.

The Hydrogen Economy is much more than that; it promises to change the fabric of our society. Hydrogen, holds the promise to break up the current cartel of energy suppliers that works hand-in-glove with a military-industrial complex that holds the entire world in a suffocating stranglehold. Hydrogen can clean things up and set the economy free. Hydrogen is the elixir that can remedy our polluting habits to create a better society, without the monopolies, the pollution, the taxes, regulations and the military controls that come with the current ways of supplying energy. Currently, energy is largely obtained from sources that centralize the economy around a single supplier, such as a huge nuclear plant or coal-powered plant. Similarly, oil is pumped up under monopoly conditions and transported in huge tankers, which has created these almighty oil companies that extend their grip over society through services stations and political lobbying to keep cars polluting the world.

We should look forward to a world in which anyone can capture energy for free in their backyards, from renewable power sources such as solar, wind, geothermal and hydro-power. This energy can be directly stored in fuel cells that are built into heating and cooling systems of buildings, lights, TV-sets, stereo equipment, computers, cars, mowers, scooters, power tools, etc. Wherever you now see rechargeable Lithium batteries used, such as in mobile phones, think hydrogen and you'll get a preview of the bright future that awaits us. Hydrogen fuel cells will enable us to cut the wires through which the puppetmaster controls us now. Hydrogen fuel cells hold the promise to set us free. Let's take a serious effort to give this technology a chance!

References:


Solar power and electric cars, a winning combination!

Who killed the electric car? It's an excellent documentary video, a must see! It was released on DVD to the home video market on November 14, 2006. 
http://earthissues.multiply.com/video/item/16 http://wikipedia.org/wiki/Who_Killed_the_Electric_Car%3F

There's more great footage at the Earth Issues website, such as a race between an electric car called the X1 against a Ferrari and a Porsche, and underwater recharging of an GM EV1 battery.

The electric car dates back to the 1830s, when Robert Anderson of Scotland invented the first crude electric carriage. Around 1900, electric cars outsold all other types of cars in America. Why? Because they did not have the vibration, smell and noise of gasoline cars and required neither gear changes to drive nor much manual effort to start (as with the hand crank on gasoline cars). The only good roads then were downtown and most car travel was local, perfect for slow electric vehicles with a limited range.

Now it's time to reinvent the electric car, for its convenience and for the positive contribution it can make in terms of the environment and global warming. Solar power and electric cars is a winning combination. Let me explain. Wind and solar power is not continuous, and this is where car batteries can help out, by storing electricity at times of high supply, to feed electricity back into the grid when supply is low. I can well imagine car batteries both drawing and feeding power to/from the grid at night. Intelligent net metering will assist with this.

How much solar power is needed for all this electricity? How much surface does it take to supply solar energy? The red squares on the image below show how much surface needs to be covered in theory by solar power facilities to generate enough electricity to meet the entire demand of respectively the World, Europe (EU-25) and Germany.

http://en.wikipedia.org/wiki/Image:Fullneed.jpg
Using concentrated thermal solar power, a mere area of 254km x 254km of desert land would theoretically suffice to meet the entire global demand for electricity for 2004.

The electricity can be transported nationwide over high voltage direct current (HVDC) lines, with line losses of about 3% per 1000 km (620 miles), adding $0.01 - $0.02/kwh to the local price of electricity.

Of course, it's hard for solar power to cater for peak demand during cold winter evenings, so it makes sense to complement solar energy with stored energy, wind energy, hydro energy, geothermal energy, etc, depending on local conditions. Anyway, as Ausra calculates, if solar facilities would store energy in molten salt, they could cater for almost all US day-and-night electricity needs, and would theoretically fit inside a square with 153 km sides. To additionally accommodate an entirely electrified vehicle fleet, the land area would grow to a square with sides of not more than 211 km.

From this perspective, the "how much surface" in the above question was better rephrased into "how little surface". Solar power alone could well provide enough energy for both our current electricity needs and can supply the additional energy needs to run our cars as well. Indeed, cars need not be bad from an environmental perspective. In fact, the combination of cars and solar power can be a winner for both. Again, let me explain.

Electricity can be stored in car batteries during the day, when cars are parked under roofs that are covered with solar panels that recharge the batteries. That could easily recharge the car battery enough for the owners to drive home and still leave sufficient power in the battery for other use. Note that 70% of Americans drive less than 33 miles per day. Late afternoon, when most people return home, they can plug their cars in at home for their own power use in the evening. Many will even have sufficient energy left to feed power back into the grid, selling electricity at top rates due to peak demand for power in the evening. Even if the battery became fully discharged in the evening, this still makes economic sense, as one can recharge later from the grid (during the night or early in the morning) when rates should be cheaper. Imagine there's a lot of wind during one part of the night. The meter will indicate that this is a good time for empty batteries to recharge. Conversely, when there is no wind in the evening, one will be able to get top dollars for feeding electricity back into the grid, pre-setting the battery to keep enough charge to get to work in the morning. As discussed, the car can then fully recharge from the solar panels on the roof of the parking place at work.

Sounds far-fetched? I'm very impressed with the Tesla Roadster, which has specs that many don't expect from electric cars, specifically an acceleration from 0 to 60 in about 4 seconds and a top speed of over 130 mph. It also looks great! You can recharge the battery at night in your garage and it will cost you as little a $2.50 in electricity for a full recharge.

With the Tesla, you'll be able to drive up to 250 miles on one single charge. This radius is achieved partly with regenerative braking that stores energy produced when braking. Recharging an empty battery with an EVSE system (operating at 70 amps) takes as little as 3.5 hours, but it also comes with a mobile-charging kit that lets you charge from any standard electrical outlet, e.g. in case you get stranded with an empty battery. Anyway, this short recharge time allows one to feed power back into the grid in the evening (when demand is high and supply from solar power sources is low) and still recharge later at night or early in the morning. Indeed, later at night rates are low, so it makes sense to recharge then. If sufficient wind is blowing, supply from wind turbines may be abundant in your area.

Electric cars requires less maintenance, since there are very few moving parts; you don't need to change engine oil, filters, gaskets, hoses, plugs, belts, there's no catalytic converter or exhaust pipe to replace. The Tesla uses Lithium-ion (Li-ion) batteries, for a number of reasons. They charge rapidly, have higher voltage, weigh less and last longer than Nickel Cadmium (Ni-Cd) batteries. Li-ion batteries do not contain polluting substances such as cadmium, lead or mercury. Li-ion batteries do not have the memory effect that makes that other batteries decrease in capacity when they are recharged before they are empty. Li-ion batteries do not have to be fully discharged, before they can be recharged, so one can top them up several times a day, e.g. at home or at the office. Nevertheless, Li-ion batteries will deteriorate over time, Tesla estimates that the battery pack needs to be replaced after about 100,000 miles. Also, cost is an issue; the Tesla Roadster 2008 model has a price-tag of $92,000 and the battery pack warranty is limited (I think it's only warranted for 100,000 miles, while it does cost thousands of dollars to replace). But battery cost is expected to come down in future, while at the same time battery capacity and performance is expected to increase over time.

Also have a look at Google's initiative on plug-in cars:

Google still uses plug-in hybrids, but it sets a trend away from using fossil fuel. There are also ethanol-electric hybrid cars; more than a year ago, Saab (General Motors Swedish car unit) already showcased such a car, combining an electric motor with an E85 Ethanol engine.

Google.org has issued a request for proposals to the tune of $10 million in order to advance sustainable transportation solutions.

Let me also pass on some links to the Rocky Mountain Institute in Colorado, at:

They envisage a "Hypercar," made of ultralight, super-strong, carbon composite material, which is 12x as strong as steel on impact. Manufacturing cars and trucks using these materials would dramatically increast the range of electrical cars.

Hydrogen is another way to store energy and is also promising in expanding the range of electric cars.

In conclusion: Just like we shouldn't rely on any single source of power (wind, hydro, solar power, geothermal, wave, tide and more), we shouldn't rely on a single way of storing power either. Apart from using car batteries for storage, we can think of capacitors, hydrogen, fly-wheels, compressed air, steam, sodium, molten salt, pumped-up water, etc. Clocks in the old days used weights to store energy. Similarly, bricks could be used as weights in larger contraptions. At even larger scale, we could use the Great Lakes as a reservoir not only of water, but also of energy. At times of peak supply of wind and solar power, surplus power could be used to pump water back from a lower to a higher lake, in order to use hydro-power at times when supply of other types of power is low. Free markets are good in sorting out which technology works best where and when. I have no doubts that the nuclear alternative will be prohibitively expensive once risk factors are better taken into account (accidents, waste management, terrorism, etc).

Thursday, October 11, 2007

Pipes in the oceans to pump up water

Science Museum head Chris Rapley and Gaia theorist James Lovelock are suggesting to install flotillas of vertical pipes in the tropical seas. Free-floating or tethered vertical pipes could pump up nutrient-rich waters from below the thermocline in order to mix them with the relatively barren waters at the ocean surface.

Such pipes could be 100 to 200 metres long, 10 metres in diameter and with a one-way flap valve at the lower end in order to pump water upwards powered by by wave movement. The water pumped up this way could fertilize algae in the surface waters and stimulate them to bloom. More specifically, pumping up water through such pipes would result in an increased presence in the surface waters of the salp, a tiny tube-like species that excretes carbon in its solid faecal pellets. This carbon would subsequently descend to the ocean floor. The hope is that this could store carbon away for millennia on the ocean floor. 

An additional effect would be that the algae produced an abundance of dimethyl sulphide (DMS), a chemical that acts as the precursor of nuclei that form sunlight-reflecting clouds. As more clouds would form above the ocean, more sunlight would be reflected away from the Earth's surface, resulting in relative cooling of the ocean underneath. 

US company Atmocean has in fact already started trials with this type of technology, using pipes that bring cold water to the surface from a depth of 200m. 

References: 

- Mixing the oceans proposed to reduce global warming 

- Ocean pipes could help the Earth to cure itself 

- Lovelock urges ocean climate fix 

Saturday, August 11, 2007

Covering parts of oceans with snow-like material

To combat global warming, William (Bill) Johns, of Chemcept Ltd, suggests to cover part of the surface of the oceans with a material as reflective as snow. The materials could be made from conventional polymers, using facilities that currently produce (excessive) packaging for retail products. 

 Bill notes that the reflective capacity of such material depends on where it will be positioned in the oceans. The closer to the equator, the more effective it will be. Snow is now predominantly located close to the poles and appears from the sun as two small rims on the edges of Earth that receive less sunshine than any other area on Earth. Yet, this relatively small snow-covered area accounts for a cooling of Earth of about three degrees Celsius, Bill estimates, because snow reflects nearly 90% of the solar radiation that falls on it. Positioning the material closer to the equator will therefore require less surface than the areas of the poles currently covered by snow -- the closer to the equator, the less surface will be needed, in order to achieve the same amount of cooling. 

For more, see: 


Tuesday, July 31, 2007

Solar and wind power in the sky

Solar panels and wind turbines only work when there is sufficient sunshine or wind. There are ways to overcome this disadvantage, such as storing the surplus electricity generated on sunny and windy days by pumping up water from a lower to a higher lake, to regain this energy as hydro-electricity later. 

Alternatively, car batteries could be charged when there is abundant electricity, to sell power back to the grid at better prices when there is high demand.

Another approach is to seek and harvest solar or wind power at locations where there is more permanent wind or sunshine. Wind turbines could be located in the sky. Bryan Roberts, professor of engineering at the University of Technology, Sydney, proposes clusters of wind turbines flying 15,000 feet high in the air. After studying the topic for 25 years, Roberts designed a helicopter-like rotorcraft to hoist a wind turbine high into the air, where winds are persistent and strong. Once there, the wind turbine is powered by its own electricity and keep itself in place, while transmitting electricity to the ground through a cable. Roberts has teamed up with San Diego-based Sky Windpower, which plans to produce a flying wind turbine with four rotors. The rotorcraft will go into the first layer of the atmosphere, called the troposphere. With GPS technology, the crafts can be kept in position to within a few feet.

Instead of using a cable to transport electricity down to the ground, electricity could also be tranferred through microwaves. Decades ago, Dr. Gerard K. O'Neill proposed to locate solar panels in space where solar power would be converted to low-density radio waves, sent to Earth and converted to electricity. O'Neill proposed this as part of a wider plan to colonize space. A publication by William Brown shows that the technology to transmit electricity by radio waves with a high degree of efficiency was already used as far back as in 1965.



Monday, July 2, 2007

Wow Energies a contender for Branson $US25 million award

As discussed, Richard Branson encourages companies to come up with solutions by offering a $US25 million award to anyone who can take existing carbon dioxide and other greenhouse gases out of the atmosphere. 

An earlier post mentioned Klaus Lackner, physicist at Columbia University, who proposes artificial trees to suck carbon out of the air. The trees suck in carbon dioxide for storage under the ocean-floor in disused oil or gas fields. 

Another contender for this award and working along similar lines is Wow Energy, a Texan company that builds equipment to clean the air from pollutants. They originally developed their technology to provide a cleaner process at the point of emission, e.g. when burning fossil fuel at a power plant ("clean coal"). 

Note that the Branson award is to clean ambient air from greenhouse gas emissions, as opposed to scrubbing done at power plants or through filters in cars, but if it works well for ambient air then that would be great. For more details, go to Wow Energies

Monday, June 4, 2007

Polar ejection of carbon dioxide

Dr. Alfred Wong of the University of California, Los Angeles, proposes to send carbon dioxide into outer space using lasers and radio waves at the arctic.

See A stairway to heaven? in The Economist


Tuesday, May 15, 2007

Electricity for Europe

Here are three ideas to supply Europe with electricity:

1. Geothermal power from Iceland

In April 2007, the Icelandic National Energy Authority signed a deal with Energie Baden-Wuerttemberg from Germany, to work on electricity being transmitted to Germany from Iceland. A 1,200-mile ocean-floor cable is envisaged to carry electricity to Britain’s national grid before reaching Germany. The proposal is to drill 3.8km through the Earth's crust into the hot basalt below, in order to tap into temperatures of up to 600C and generate enough geothermal electricity to power up to 1.5 million homes in Europe.

See Iceland’s hot rocks may be power source for UK in The Sunday Times


2. Hydropower from Congo

The Grand Inga power station is a project to harness hydropower of the Congo River. Located near the mouth of the Congo River, with an output of 39,000 megawatts, Grand Inga would be the world's biggest hydroelectric scheme, generating twice the power of China's Three Gorges dam.

Three electricity superhighways would deliver power south to Angola, Botswana and South Africa, west towards Nigeria and north to Egypt and - ultimately - southern Europe. The project might cost $US80billion, but power delivered from Grand Inga to the Italian border would cost less than the current market price of electricity in Italy today.

See Africa waits on scheme to harness the power of the Congo River in The Sunday Times


3. Thermal solar power from Africa

The Trans-Mediterranean Renewable Energy Cooperation (TREC) was founded in September 2003. One proposal is for Thermal Solar Power to be generated in the deserts of Africa, for transmission by means of High-Voltage Direct Current cables to Europe, with losses of only about 3% per 1000 km, adding up to losses across the Mediterranean of 10-15% to Europe.













The above picture below is from:
http://en.wikipedia.org/wiki/Image:Fullneed.jpg

The red squares on the image represent the theoretical space needed for solar power plants to generate sufficient electric power in order to meet the electricity demand of respectively the World, Europe (EU-25) and Germany, based on data from a study by the German Center of Aerospace (DLR), P. 12 bzw. 26, 2005.



Monday, May 14, 2007

Sun shields from Moon Dust

Curtis Struck of Iowa State University suggests that lunar dust particles are just the right size to scatter sunlight. They could be positioned in the Moon's orbit in a pair of stable clouds that would each pass in front of the Sun once a month, blocking sunlight for about 20 hours each month
(Journal of the British Interplanetary Society, vol 60, p 1).